1. Pole powierzchni walca Pc=2Pp+Pb Pc=2πr²+2πrH 2. Objętość walca V=Pp•H V=πr²•H 3. Objętość ostrosłupa V=⅓Pp•H Pc=Pp+Pb 4. Objętość i pole graniastosłupa V=Pp•H Pc=Pp+Pb 5. Bryłami obrotowymi nazywamy bryły, powstałe w wyniku...
Kepler Johannes (1571-1630), wybitny astronom, matematyk i fizyk niemiecki doby renesansu, profesor uniwersytetu w Grazu, Linzu, uczeń i kontynuator prac T. de Brahe w obserwatorium astronomicznym w Pradze, zwolennik teorii M. Kopernika, odkrył...
Środek ciężkości Z Wikipedii, wolnej encyklopedii. Środek ciężkości ciała lub układu ciał jest punktem, w którym przyłożona jest wypadkowa siła ciężkości danego ciała. Dla ciała znajdującego się w jednorodnym polu grawitacyjnym środek...
All by streq : ) wszystko macie w zalaczniku a w/g mnie warto tam zajrzec bo dostalem 5+ :))) Dawno, dawno temu żył sobie król, który strasznie się nudził. Nie bawił go fechtunek, ani jazda konna, ani nawet turniej rycerski. Był tak...
SPIS TREŚCI. 1. CAŁKA NIEOZNACZONA: a. Całka nieoznaczona. b. Funkcja pierwotna. c. Całki funkcji elementarnych. d. Tablica całek. e. Podstawowe prawa całkowania. f. Całkowanie funkcji trygonometrycznych. g. Całkowanie funkcji wymiernej....
Przed czterema milionami lat na Ziemi pojawili się ludzie. Stopniowo przybierali pozycję pionową i pozoztali w niej do dziś (acz dziś z powrotem zaczynają się garbić - przy komputerach). Wykonywali własnoręcznie narzędzia z kamienia. Do wykonania...
Matematyka jest królową nauk, któż tego nie wie... Z pewnością jest tak ponieważ większość dziedzin wiedzy opiera sie właśnie na matematyce. Poza tym na rozwój matematyki wpływ miały różne kultury. Liczeniem, kreśleniem kwadratów i kół oraz...
Ucząc się geometrii w szkole podstawowej czy średniej, poznawaliśmy w głównej mierze geometrię klasyczną: koła, kwadraty, wielokąty... . Są to proste figury, kreślone zwykłym cyrklem lub linijką. Może dlatego wydają się nam tak oderwane od...
Powiązanie najsłynniejszych stałych czyli NAJPIĘKNIEJSZY WZÓR MATEMATYKI Niezwykłe związki między liczbami mogą skłaniać do ogólniejszych refleksji; do zastanawiania się nad znaczeniem pojęcia liczby, nad naturą i potęgą matematyki. Wśród znanych...
"Między duchem a materią pośredniczy matematyka" HUGO STEINHAUS -------------------------------------------------------------------------------- "Oprócz matematyki nie istnieje żadna niezawodna wiedza z wyjątkiem tej, która wywodzi się z...
Historia matematyki sięga czasów zamierzchłych, odkąd ludzie porównywali wielkości, mierzyli, liczyli przedmioty i wyciągali wnioski; w starożytnej Babilonii i Egipcie rozwinęła się technika rachunkowa, co doprowadziło do powstania zaczątków...
Kąt –jest to obszar płaszczyzny ograniczony dwoma półprostymi o wspólnym początku wraz z tymi półprostymi. Kąty ostre, proste, rozwarte, półpromienne, pełne. Dwusieczna kąta to półprosta o początku w wierzchołku kąta, która dzieli ten kąt na...
SYMETRIA OSIOWA Symetrią osiową względem prostej a nazywamy przekształcenie płaszczyzny na płaszczyznę, w którym każdemu punktowi P przyporządkowany jest punkt P' leżący na prostej prostopadłej przechodzącej przez O w tej samej odległości od O...
Wzory redukcyjne sin(180`+*)= -sin* sin(90`-*)=cos* sin(90`+*)=cos* Sin(180`-*)=sin* cos(180`+*)= -cos* cos(90`-*)=sin* cos(90`+*)= -sin* Cos(180`-*)= -cos* tg(180`+*)=tg*...
(zawarlem tu trochę definicji z tego zakresu powieważ trudno znaleźć cokolwiek na ten temat w necie)
Pitagoras (ok. 572-497 p.n.e),matematyk i filozof grecki. Pochodził z wyspy Samos, czyli wschodniej kolonii jońskiej. Mając lat 40 opuścił Jonię, która walczyła z Persami, i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi...
Przez 2 i 5 Przez 2 (lub przez 5) są podzielne te i tylko te liczby, których cyfra jedności, wzięta jako liczba jest podzielna przez 2 (lub odpowiednio przez 5), lub które są zakończone zerem. Przez 4 i 25 Przez 4 (lub przez 25) są podzielne te...
{12x-6y=6 7x+y=8 {12x=6+6y/:12 7x+y=8 {x=0,5+0,5y 7(0,5+0,5y)+y=8 {x=0,5+0,5y 3,5+3,5y+y=8 {x=0,5+0,5y 4,5y=8-3,5 {x=0,5+0,5y 4,5y=4,5/:4,5 {x=1 y=1
Statystyka, nauka zajmująca się ilościowymi metodami badania prawidłowości zjawisk (procesów) masowych. Jej celem jest poznanie występujących prawidłowości, ich ilościowe wyrażenie oraz wyodrębnienie w nich składnika systematycznego i...
Pole kwadratu: a2 Ob. 4a Pole trójkąta dowolnego(a,b,c): a•h Ob. a+b+c Pole równobocznego(a,b,b): a2√3 /4(w ułamku) Ob.: 2b+a Obwód trójkąta równobocznego (a,a,a) = 3a Pole prostopadł.: a•h Ob. 2a+2b Pole rombu: a•h lub •d1•d2 Ob= 4a...
5. Kąt 41.Jeżeli na płaszczyźnie z danego punktu poprowadzimy dwie półproste, to utworzymy figurę, która posłuży nam do określenia pojęcia kąta. Półproste OA i OB (rys. 11) nazywamy ramionami, a ich wspólny punkt O wierzchołkiem. Otrzymaną...
Szeregi funkcyjne i potęgowe Szereg zbieżny Szereg rozbieżny Kryterium Weierstrassa Kryterium Dirichleta Twierdzenie Cauchy-Hadamarda ------------------------- cala praca wraz z wzorami znajduje sie w zalaczniku
Szeregi liczbowe i całka oznaczona Szeregi liczbowe Szereg geometryczny Szereg harmoniczny Szereg harmoniczny rzędu "alfa" Kryterium porównawcze zbieżności szeregów Kryterium porównawcze rozzbieżności szeregów Kryterium d’Alemberta...
PITAGORAS Z SAMOS (570-496 p.n.e.) Pitagoras był filozofem, który pozostawił po sobie prąd filozoficzno-religijny związany ze swoim imieniem, trwający przez dwa wieki. Pitagorejczycy cenili tylko to co mogło być dowiedzione na drodze...
Tworzenie się liczb u ludów pierwotnych to przedmiot nader ciekawych studiów historycznych, już dość daleko w specjalnych dziełach posuniętych. Badania skąd pochodzą nazwy liczb, ich powinowactwa etymologiczne ( na przykład : pięć – pięść), ich...
1. Bryłami obrotowymi nazywamy bryły, które powstają w wyniku obrotu figur płaskich wikół osi obrotu. 2. Wysokością walca nazywamy dwie podstawy i prostopadły ddo nich. 3. Twożąca stożka jest to odcinek łączący wierzchołek z dowolnym punktem...
Całość jest zapisana w załączniku. Robione w Excelu. Mam nadzieje że sie przydadzą. Zamiast alfa i beta jest X i Y.
Spis treści 1. Ogólny schemat badania przebiegu funkcji...........................................3 2. Przykłady...................................................................................................5 1. Ogólny schemat badania...
Funkcje sumy kątów: Sin (x + y) = sinx*cosy + cosx*siny Cos (x + y) = cosx*cosy – sinx*siny Tg (x + y) = tgx + tgy/ 1 – tgx*tgy , jeżeli cosx ¹ 0, cosy ¹ 0, cos (x + y) ¹ 0 Ctg (x + y) = ctgx*ctgy – 1/ ctgx + ctgy, jeżeli sinx ¹ 0, siny ¹ 0,...
Prawa logiczne: Prawo podwójnego przeczenia Prawo wyłączonego środka Prawo transpozycji Zaprzeczenie implikacji Reguła odrywania Przechodniość implikacji Prawo rozdzielczości alternatywy Rozdzielczość koniunkcji -- Patrz załącznik
Pitagoras z Samos (ok. 570 p.n.e. - ok. 496 p.n.e.) ok. 530 r. p.n.e. w Krotonie założył związek religijno - polityczny, zwany później szkołą pitagorejską. W związku tym obowiązywały rygorystyczne zasady. Zrzeszał on zarówno mężczyzn, jak i...
Oś symetrii figury F nazywamy taką prostą l, o ile istnieje, że obrazem figury F w symetrii osiowej względem tej prostej jest ta sama figura. Punkt A’ o współrzędnych x’, y’ jest obrazem punktu A o współrzędnych x, y w symetrii osiowej względem...
Istnieje równanie, które ułatwia nam zmiane liczby wymiernej, na ułamek zwykły. Dajmy przykład: 1,(67)(tutaj stosuje pewne uproszczenie eliminując jadności) x=0,(67) 100x=67,(67) 100x-x=67,(67)-0,(67) 99x=67 x=67/99 1,(67)=1 67/99...
1. Działania i liczby 1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną...
Praca znajduję się w załączniku (wzory, wykresy, tabelki)
Biografia Platona: Platon (ok. 437 - 347 p.n.e.), filozof grecki, swoje zamiłowania do filozofii zawdzięcza Sokratesowi. Po śmierci Sokratesa odbył liczne podróże podczas których poznał wiele poglądów w tym doktryny orfickie i pitagorejskie o...
Tales z Miletu uważany jest za jednego z „Siedmiu mędrców” czasów antycznych i za ojca nauki greckiej. Starożytni pisarze nazywali go „pierwszym” matematykiem i astronomem. Te wyrażenia świadczą iż była to postać o wielostronnych zainteresowaniach...
Punkt d jest środkiem okręgu. R - promień okręgu. |AD| = |BD| = |CD| = R Trójkąt ADC jest równo ramienny. Tak więc: kąt DAC = kąt ACD = alfa Z tw. o sumie kątów w trójkącie. kąt ADC = 180 - alfa - alfa = 180 - 2(alfa)...
Tales z Miletu uważany jest za jednego z „Siedmiu mędrców” czasów antycznych i za ojca nauki greckiej. Starożytni pisarze nazywali go „pierwszym” matematykiem i astronomem. Te wyrażenia świadczą iż była to postać o wielostronnych zainteresowaniach...
sin(α+β)= sinαcosβ+cos sinβ sin(α-β)= sinαcosβ-cosαsinβ sin2α=2sinα cosα sinα+sinβ=2sin(α+β)/2 cos(α-β)/2 sinα-sinβ=2cos(α+β)/2 sin(α-β)/2 |sin α/2|=√(1-cosα)/2 sin3α=3sin2α-4nin3α sin(-α)=sin(180o-α) sinα=2sinα/2 cosα/2...
Wielu ludzi ma problem z rozwiązywaniem równań. o to sposoby jak tego dokonać: NP: 4X+15=8X+6 Zdejmujemy po obu stronach mozliwe X (byle tylko po obu stronach odjac porowno) W tym przypadku zdejmujemy Po lewej:4X i po prawej 4X i...
TALES Z MILETU (ok. 620 - ok. 540), gr. filozof i matematyk; prawdopodobnie pierwszy uczony i filozof eur.; jeden z twórców jońskiej filozofii przyrody; uznając wodę za początek wszystkiego, zapoczątkował filoz. poszukiwanie pierwszej zasady, z...
Funkcje sumy kątów: Sin (x + y) = sinx*cosy + cosx*siny Cos (x + y) = cosx*cosy – sinx*siny Tg (x + y) = tgx + tgy/ 1 – tgx*tgy , jeżeli cosx ą 0, cosy ą 0, cos (x + y) ą 0 Ctg (x + y) = ctgx*ctgy – 1/ ctgx + ctgy, jeżeli sinx ą 0, siny ą 0,...