profil

Matematyka

(451)
Więcej przedmiotów
Pokaż więcej
Lista
Polecamy | Najnowsze
poleca76%

Zamiana jednostek

Jednostki długości Podstawową jednostką długości jest metr milimetr [mm] = 0,001 m, centymetr [cm] = 0,01 m, decymetr [dm] = 0,1 m, kilometr [km] = 1000 m. 1 mm = 0,1 cm, czyli 1 cm = 10 mm 1 mm = 0,01 dm, czyli 1 dm = 100 mm 1 mm...

poleca82%

Cechy podzielności liczb

Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...

poleca75%

Jednostki masy, długości, powierzchni i objętości

Jednostki masy 1 gram 1 dekagram = 10 g 1 kilogram = 100 dag = 1000 g 1 tona = 1000 kg Jednostki długości 1 mm 1 cm = 10 mm 1 dm = 10 cm 1 m = 100 cm 1 km = 1000 m Jednostki powierzchni 1 mm2 1 cm2 = 100 1 dm2 =100...

poleca84%

Cecha podzielności liczb naturalnych

Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...

poleca83%

Geometria - kluczowe wzory

- \( l = 2\pi r \) – długość okręgu - \( P = \pi r^2 \) – pole koła - \( a\sqrt{2} \) – przekątna w kwadracie - \( h = \frac{a\sqrt{3}}{2} \) – wysokość trójkąta równobocznego - \( P = \frac{a\sqrt{3}}{4} \) – pole trójkąta równobocznego - \(...

poleca79%

Własności czworokątów

PROSTOKĄT - wszystkie kąty proste - przekątne równej długości - przekątne dzielą się na połowy KWADRAT - wszystkie boki równe - wszystkie kąty proste Przekątne są: - równej długości - prostopadłe - dzielą się na polowy - osiami...

poleca82%

Twierdzenie Pitagorasa

Trójkąt jest prostokątny to suma kwadratów długości przyprostokątnych jest równa długości przeciwprostokątnych podniesionych do kwadratu. Twierdzenie Pitagorasa Wzór twierdzenia c²= a² + b² Wyrażenia a2, b2 oraz c2 kojarzą nam się...

poleca83%

Cechy przystawania trójkątów

Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...

poleca84%

Dowody twierdzenia Pitagorasa

Oto interpretacja geometryczna: jeżeli na bokach trójkąta prostokątnego zbudujemy kwadraty, to suma pól kwadratów zbudowanych na przyprostokątnych tego trójkąta jest równa polu kwadratu zbudowanego na przeciwprostokątnej. Odkrycie tego...

poleca84%

Uklady równań

Układ równań Układ równań ? koniunkcja pewnej liczby (być może nieskończonej[1]) równań. Rozwiązaniem układu równań jest każde przyporządkowanie wartości (liczb w przypadku układu równań algebraicznych, funkcji w przypadku układu równań...

poleca84%

Liczba PI

Liczba π Liczba π jest liczbą niewymierną, określającą stosunek długości okręgu do długości jego średnicy. π=3,141592... Symbol π został pierwszy raz użyty w 1706 roku przez matematyka angielskiego Wiliama Jonesa. W powszechne użycie...

poleca84%

Pitagoras

Pitagoras (ok. 572-497 p.n.e.) grecki matematyk. Pochodził z wyspy Samos, czyli wschodniej kolonii japońskiej. Mając 40 lat, opuścił Jonię, która walczyła z Persami i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi...

poleca84%

Wzory skróconego mnożenia

Oczywiście, poniżej znajdziesz rozbudowany opis każdego z tych wzorów: Kwadrat sumy (a + b)^2 to wzór określający kwadrat sumy dwóch składników a i b. Wynik tego działania to suma kwadratu pierwszego składnika (a^2), dwukrotności iloczynu...

poleca84%

Liczby doskonałe - tajemnicza symetria liczb

Liczby doskonałe stanowią fascynujące zjawisko w matematyce, które wciąż przyciąga uwagę badaczy. Definiuje się je jako te liczby, których suma wszystkich dzielników właściwych (czyli dzielących się na liczbę inną niż ta liczba sama w sobie) równa...

poleca83%

Symbolika liczb

Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...

poleca77%

Pola figur z przykładami

Wzór na pole prostokąta : a x b Czyli np. bok "a" wynosi 4 cm, a bok "b" 7 cm to stosujemy się do wzoru. Mianowicie: 4 cm x 7 cm = 28 cm kwadratowych. Wzór na pole kwadratu to : P = a 2 Czyli np. bok "a" ma 4 cm. W takim razie: 4...

poleca84%

Działania na ułamkach

Zaczniemy od najłatwiejszego działania jakim jest dodawanie. Najpierw przypomnę budowę ułamka zwykłego: 1/2 po lewej stronie(normalnie na górze) jest licznik.Po prawej stronie(normalnie na dole) jest mianownik. ten ułamek czytamy jako jedna...

poleca83%

Geometria - matematyka

Praca znajduje się w załączniku.

poleca84%

Wykorzystanie równań do zadań z treścią.

Janek dodał 3 liczby. Druga z tych liczb była cztery razy większa od pierwszej z nich, a trzecia była o 8 mniejsza od pierwszej. Otrzymał 28. Jakie to były liczby? I liczba - \(x\) II liczba - \(4x\) III liczba - \(x \times 4 - 8\)...

poleca84%

Symetria osiowa i środkowa

Spis treści 1. Wstęp 2. Symetria środkowa 3. Symetria osiowa 1. Wstęp Symetria, własność obiektu ze względu na różnego rodzaju przekształcenia (np. przekształcenia geometryczne). Najprostszymi symetriami geometrycznymi są: symetria...

poleca83%

Zadania z wykorzystaniem wiadomości na temat podzielności liczb

Przedstawiam wykonanie zadań z zastosowaniem wiadomości o podzielności. Treść zadania Legenda: 321*654=321 do potęgi 654 Uzasadnij, że liczba 321*654-123*456 jest podzielna przez 10 i nie dzieli się przez 12 Jak rozwiązać takie...

poleca84%

Permutacje

Permutacją z powtórzeniami zbioru k elementowego nazywamy ciąg, w którym pewne elementy powtarzają się n1, n2, ..., nk razy. Liczba n elementowych permutacji wyraża się wzorem

poleca84%

Wzory na matematyke

Wzory Skróconego mnożenia: \[ (a + b)^2 = a^2 + 2ab + b^2 \] \[ (a - b)^2 = a^2 - 2ab + b^2 \] \[ a^2 - b^2 = (a - b)(a + b) \] Pole i obwód koła: - Pole koła: \[ P_o = π R^2 \] - Obwód okręgu (koła): \[ L = 2 π R \] gdzie \( R \)...

poleca84%

Liczby itp.

UŁAMEK NIEWŁAŚCIWY to ułamek, w którym licznik jest większy od mianownika: Przykład: LICZBA MIESZANA składa się z liczby całkowitej i ułamka zwykłego: Przykład: ZAMIANA LICZBY MIESZANEJ NA UŁAMEK NIEWŁAŚCIWY: Żeby zamienić liczbę mieszaną na...

poleca84%

Liczby Pierwsze

Liczby pierwsze są to takie liczby naturalne, które większe są od jedynki i podzielne bez reszty przez samą siebie i jedynkę. Jednym z pytań dotyczących liczb pierwszych, które narzuca się każdemu jest pytanie o liczbę tych liczb: ile ich jest,...

poleca83%

Wzór Pitagorasa

Twierdzenie Pitagorasa. Jeżeli trójkąt jest prostokątny, to kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokątnych. Założenie: ?ABC jest prostokątny. Teza: c2 = a2 b2. Odwrotne twierdzenie Pitagorasa. Jeżeli...

poleca84%

Szereg geometryczny.

Definicja. Jeżeli jest ciągiem geometrycznym, to ciąg określony wzorem: nazywamy szeregiem geometrycznym lub ciągiem sum częściowych ciągu . Definicja: Jeżeli szereg jest zbieżny do skończonej granicy, to tą granicę nazywamy sumą...

poleca84%

Równoległoboki i romby

Czworokąt, który ma dwie pary boków równoległych, to równoległobok. Równoległobok, który ma boki jednakowej długości nazywamy rombem. Przekątne równoległoboku przecinają się w połowie. Przekątne rombu przecinają się w połowie i są prostopadłe....

poleca84%

Hiperbola

Hiperbola to krzywa płaska (dwuwymiarowa), składająca się z dwóch gałęzi zwanych hiperbolami. Równoważnie, hiperbolę można zdefiniować jako miejsce geometryczne punktów, dla których stosunek długości ogniskowej (odległość między ogniskami) do...

poleca83%

Dodawanie ułamków zwykłych - konspekt - klasa 4

SCENARIUSZ ZAJĘĆ z matematyki Prowadzący: Marzena Majewska Miejsce przeprowadzonych zajęć: Społeczna Szkoła Podstawowa w Gzach Data przeprowadzenia zajęć: 14 kwietnia 2014 r. Czas trwania zajęć: 45 min Klasa: IV Temat zajęć: Dodawanie...

poleca84%

Bryły obrotowe

Bryła obrotowa - są to bryły powstałe w wyniku obrotu brył płaskich wokół własnej osi * Najważniejsze bryły obrotowe Walec - bryła powstała w wyniku obrotu prostokąta wokół jednej z krawędzi....

poleca84%

Ułamki, procenty - zadania

1) Zapisz w postaci dziesiętnej i skróć: - \( -0,875 = -\frac{7}{8} \) - \( -0,375 = -\frac{3}{8} \) - \( -0,0000854 = -\frac{854}{10000000} = -\frac{427}{5000000} \) - \( -0,3948 = -\frac{3948}{10000} = -\frac{987}{2500} \) - \( -0,0000125 =...

poleca84%

Figury płaskie i przestrzenne - pola,objętości, obwody

FIGURY PŁASKIE: -kwadrat -trójkąt -równoległobok -trapez -deltoid -koło FIGURY PRZESTRZENNE: -prostopadłościan -ostrosłup -walec -stożek -kula -sześcian foremny WSZYSTKO TO ZNAJDUJE SIĘ POD SPODEM W ZAŁĄCZNIKU

poleca84%

Logarytmy

logarytm zapisuje się skrótem log podstawa logarytmu napisana jest małą liczbą przy g liczbę logarytmowaną piszemy przy logarytmie logarytm naturalny, czyli o podstawie e zapisujemy ln logarytm bez napisanej podstawy to logarytm o podstawie 10...

poleca84%

bryły

Graniastosłupy: Prostopadłosciany-ma szesc scian. Każda z tych ścian jest prostokatem. Prostopadłościan, ktorego wszystkie ściany sa kwadratami, nosi nazwe sześcian. W graniastosłupie(prostym) podstawa dolna jest przystająca i równoległa do...

poleca83%

Pola i obwodu figur płaskich

PROSTOKĄT P= ab ( pośrodku jest mnożenie) Ob= 2a+2b TRAPEZ P= 1/2(a+b)h Ob= wszystkie boki dodać KWADRAT P= aa Ob= 4a RÓWNOLEGŁOBOK P= ah Ob= 2a+2b ROMB P= ah ( z przekątnymi jest P= 1/2 * d1 * d2 ) Ob= 4a DELTOID P=...

poleca84%

Materiały z kl III gm.:bryły obrotowe, algebra, graniastosłupy, ostrosłupy itp.

1. Bryłami obrotowymi nazywamy bryły, które powstają w wyniku obrotu figur płaskich wikół osi obrotu. 2. Wysokością walca nazywamy dwie podstawy i prostopadły ddo nich. 3. Twożąca stożka jest to odcinek łączący wierzchołek z dowolnym punktem...

poleca84%

Rozwiązywanie nierówności

Konspekt lekcji matematyki przeprowadzonej w klasie I gimnazjum. Temat: Rozwiązywanie nierówności ? c .d. Cele lekcji: a)Wiadomości: ? Znajomość zasad rozwiązywania nierówności. ? Przypomnienie definicji cyfry i liczby. ? Przypomnienie własności...

poleca83%

Działania na liczbach naturalnych i ułamkach dziesiętnych.

zad.1. Oblicz w pamięci: a) 70 x 80 = ........... 70 x 80 = 5.600 450 x 200 = ....... 450 x 200 = 90.000 35000 x 100 = ..... 35000 x 100 = 3.500.000 270 x 30000 = ...... 270 x 30000 = 5.400.000 b) 7500 : 10 = ..........

poleca83%

Liczby i wyrażenia arytmetyczne - sprawdzian

Praca klasowa liczby i wyrażenia arytmetyczne Pobierz załącznik

poleca83%
poleca84%

Wyrażenia algebraiczne

Wyrażenia algebraiczne powstają przez połączenie symboli literowych oraz liczb znakami działań i nawiasów, np. 4x 2y-3 3a 2b-c 8m-9 2(a b) (x y) Każde wyrażenie możemy zapisać w różny sposób, wykonując działania na literach, podobnie jak na...

poleca84%

Zakres materiału na mature z matematyki

EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...

poleca83%

Zadanie o trójkącie prostokątnym wykorzystujące twierdzenie o dwusiecznej

Oblicz stosunek pola koła opisanego na trójkącie prostokątnym do pola koła wpisanego w tym trójkącie, wiedząc, że dwusieczna kąta prostego dzieli przeciwprostokątną w stosunku 3:4.

poleca82%

Geometria- definicje

Kąt –jest to obszar płaszczyzny ograniczony dwoma półprostymi o wspólnym początku wraz z tymi półprostymi. Kąty ostre, proste, rozwarte, półpromienne, pełne. Dwusieczna kąta to półprosta o początku w wierzchołku kąta, która dzieli ten kąt na...

poleca84%

Czego nauczyliśmy się będąc w klasie 1 gimnazjum?

1. Działania i liczby 1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną...

poleca84%

Wyrażenia algebraiczne - definicja

Wyrażenie algebraiczne to wyrażenie składające się liter oraz liczb, które są połączone ze sobą znakami działań oraz nawiasami. Za pomocą wyrażeń algebraicznych zapisujemy różne zwroty matematyczne, wzory, twierdzenia oraz równania i nierówności....

poleca84%

matematyka-czy jest potrzebna ?czy nie?

Matematyka-a cusz to za przedmiot? matematyka jest piękna i niwezwykle pożyteczna,w jej symbola twierdzeniach i zasadach kryje sie wiedza o swiecie i żadzących w nim prawach(ojejku troche pomyliłam)ale wiecie co tak naprawde mam jom w...

poleca84%

Prostopadłość prostych w przestrzeni

1. Prostopadłość prostych w przestrzeni. Proste prostopadłe na płaszczyźnie to dwie przecinające się proste, z których każda jest osią symetrii drugiej. Proste o tej właściwości są również prostopadłe w przestrzeni. Rozszerzmy jednak pojęcie...

poleca84%

Systemy liczbowe ( dziesiątkowy, dwójkowy, szesnastkowy, dwunastkowy)

System liczbowy jest to sposób zapisywania i nazywania liczb. Są różne systemy liczbowe, mogą one być pozycyjne lub addycyjne. W systemie pozycyjnym wartość cyfry zależy od jej pozycji względem innych. Przedstawić można ją jako odpowiednią ilość...

Ciekawostki ze świata