Cechy podzielności przez 2 Liczba jest podzielna przez 2 jeżeli w rzędzie jedności ma cyfrę:0, 2, 4, 6, lub 8. Przykłady : 24, 506, 1002, 99990 Cechy podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr tworzy...
Cecha podzielności przez 2 Liczba jest podzielna przez 2 jeżeli jej ostatnia cyfra jest parzysta lub jest nią zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3 Liczba jest podzielna przez 3 jeżeli suma jej cyfr...
Posługiwanie się definicją w celu stwierdzenia czy dwie figury są przystające może okazać się kłopotliwe, znacznie prościej jest sprawdzić, czy badane figury spełniają tak zwane cechy przystawania, to znaczy warunki, które gwarantują ich...
Oto interpretacja geometryczna: jeżeli na bokach trójkąta prostokątnego zbudujemy kwadraty, to suma pól kwadratów zbudowanych na przyprostokątnych tego trójkąta jest równa polu kwadratu zbudowanego na przeciwprostokątnej. Odkrycie tego...
Pitagoras (ok. 572-497 p.n.e.) grecki matematyk. Pochodził z wyspy Samos, czyli wschodniej kolonii japońskiej. Mając 40 lat, opuścił Jonię, która walczyła z Persami i odbył liczne podróże, również do Indii, gdzie zetknął się z tamtejszymi...
Oczywiście, poniżej znajdziesz rozbudowany opis każdego z tych wzorów: Kwadrat sumy (a + b)^2 to wzór określający kwadrat sumy dwóch składników a i b. Wynik tego działania to suma kwadratu pierwszego składnika (a^2), dwukrotności iloczynu...
Liczby doskonałe stanowią fascynujące zjawisko w matematyce, które wciąż przyciąga uwagę badaczy. Definiuje się je jako te liczby, których suma wszystkich dzielników właściwych (czyli dzielących się na liczbę inną niż ta liczba sama w sobie) równa...
Liczbę 1 uważano dawno, dawno temu za liczbę najdoskonalszą. Jest to pierwsza liczba nieparzysta. Wszystkie inne liczby pochodzą od jedynki, np.2, to 1 + 1. Jeden - ile to jest: dużo czy mało? Zastanów się! Wszyscy chcą być pierwsi: w nauce, w...
Spis treści 1. Wstęp 2. Symetria środkowa 3. Symetria osiowa 1. Wstęp Symetria, własność obiektu ze względu na różnego rodzaju przekształcenia (np. przekształcenia geometryczne). Najprostszymi symetriami geometrycznymi są: symetria...
Permutacją z powtórzeniami zbioru k elementowego nazywamy ciąg, w którym pewne elementy powtarzają się n1, n2, ..., nk razy. Liczba n elementowych permutacji wyraża się wzorem
Liczby pierwsze są to takie liczby naturalne, które większe są od jedynki i podzielne bez reszty przez samą siebie i jedynkę. Jednym z pytań dotyczących liczb pierwszych, które narzuca się każdemu jest pytanie o liczbę tych liczb: ile ich jest,...
Definicja. Jeżeli jest ciągiem geometrycznym, to ciąg określony wzorem: nazywamy szeregiem geometrycznym lub ciągiem sum częściowych ciągu . Definicja: Jeżeli szereg jest zbieżny do skończonej granicy, to tą granicę nazywamy sumą...
Hiperbola to krzywa płaska (dwuwymiarowa), składająca się z dwóch gałęzi zwanych hiperbolami. Równoważnie, hiperbolę można zdefiniować jako miejsce geometryczne punktów, dla których stosunek długości ogniskowej (odległość między ogniskami) do...
SCENARIUSZ ZAJĘĆ z matematyki Prowadzący: Marzena Majewska Miejsce przeprowadzonych zajęć: Społeczna Szkoła Podstawowa w Gzach Data przeprowadzenia zajęć: 14 kwietnia 2014 r. Czas trwania zajęć: 45 min Klasa: IV Temat zajęć: Dodawanie...
FIGURY PŁASKIE: -kwadrat -trójkąt -równoległobok -trapez -deltoid -koło FIGURY PRZESTRZENNE: -prostopadłościan -ostrosłup -walec -stożek -kula -sześcian foremny WSZYSTKO TO ZNAJDUJE SIĘ POD SPODEM W ZAŁĄCZNIKU
logarytm zapisuje się skrótem log podstawa logarytmu napisana jest małą liczbą przy g liczbę logarytmowaną piszemy przy logarytmie logarytm naturalny, czyli o podstawie e zapisujemy ln logarytm bez napisanej podstawy to logarytm o podstawie 10...
1. Bryłami obrotowymi nazywamy bryły, które powstają w wyniku obrotu figur płaskich wikół osi obrotu. 2. Wysokością walca nazywamy dwie podstawy i prostopadły ddo nich. 3. Twożąca stożka jest to odcinek łączący wierzchołek z dowolnym punktem...
Konspekt lekcji matematyki przeprowadzonej w klasie I gimnazjum. Temat: Rozwiązywanie nierówności ? c .d. Cele lekcji: a)Wiadomości: ? Znajomość zasad rozwiązywania nierówności. ? Przypomnienie definicji cyfry i liczby. ? Przypomnienie własności...
zad.1. Oblicz w pamięci: a) 70 x 80 = ........... 70 x 80 = 5.600 450 x 200 = ....... 450 x 200 = 90.000 35000 x 100 = ..... 35000 x 100 = 3.500.000 270 x 30000 = ...... 270 x 30000 = 5.400.000 b) 7500 : 10 = ..........
EGZAMIN DOJRZAŁÓŚCI –ZAKRES MATERIAŁU Z MATEMATYKI I.ZBIORY 1)Działania na zbiorach 2)Relacje między zbiorami 3)Zbiory liczbowe (N,C,NW,R) 4)Przedziały liczbowe 5)Potęgowanie i pierwiastkowanie, działania 6)Logarytmowanie Pojęcie...
Oblicz stosunek pola koła opisanego na trójkącie prostokątnym do pola koła wpisanego w tym trójkącie, wiedząc, że dwusieczna kąta prostego dzieli przeciwprostokątną w stosunku 3:4.
Kąt –jest to obszar płaszczyzny ograniczony dwoma półprostymi o wspólnym początku wraz z tymi półprostymi. Kąty ostre, proste, rozwarte, półpromienne, pełne. Dwusieczna kąta to półprosta o początku w wierzchołku kąta, która dzieli ten kąt na...
1. Działania i liczby 1. Liczby rzeczywiste – wszystkie liczby , które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q , gdzie p jest dowolną liczbą całkowitą, a q jest dowolną...
Matematyka-a cusz to za przedmiot? matematyka jest piękna i niwezwykle pożyteczna,w jej symbola twierdzeniach i zasadach kryje sie wiedza o swiecie i żadzących w nim prawach(ojejku troche pomyliłam)ale wiecie co tak naprawde mam jom w...
1. Prostopadłość prostych w przestrzeni. Proste prostopadłe na płaszczyźnie to dwie przecinające się proste, z których każda jest osią symetrii drugiej. Proste o tej właściwości są również prostopadłe w przestrzeni. Rozszerzmy jednak pojęcie...
System liczbowy jest to sposób zapisywania i nazywania liczb. Są różne systemy liczbowe, mogą one być pozycyjne lub addycyjne. W systemie pozycyjnym wartość cyfry zależy od jej pozycji względem innych. Przedstawić można ją jako odpowiednią ilość...
Zadanie 19. Port w Narwiku nie zamarza, chociaż położony jest za kołem podbiegunowym północnym, ponieważ: A. osłonięty jest od strony morza wysokim falochronem, B. dociera tam Prąd Zatokowy (Golfsztrom), C. linia brzegowa jest...
Cecha podzielności przez 2: Liczba jest podzielna przez 2, jeżeli jej ostatnia cyfra jest parzysta lub wynosi zero. Przykłady: 12, 48, 100, 124 Cecha podzielności przez 3: Liczba jest podzielna przez 3, jeżeli suma jej cyfr tworzy liczbę...
Przez 2 i 5 Przez 2 (lub przez 5) są podzielne te i tylko te liczby, których cyfra jedności, wzięta jako liczba jest podzielna przez 2 (lub odpowiednio przez 5), lub które są zakończone zerem. Przez 4 i 25 Przez 4 (lub przez 25) są podzielne te...
1. Liczby rzeczywiste – wszystkie liczby, które odpowiadają punktom na osi liczbowej. 2. Liczby wymierne – liczby dające przedstawić się za pomocą ułamka p/q, gdzie p jest dowolną liczbą całkowitą, a q jest dowolną liczbą naturalną (np. 1/7,...
Równaniem nazywamy równość dwóch wyrażeń, z których przynajmniej jedno jest wyrażeniem algebraicznym. Literę występującą w równaniu nazywamy niewiadomą Jeżeli jakaś liczba po podstawieniu w miejsce niewiadomej daje równość prawdziwą, to mówimy,...
Oto opisy poszczególnych wzorów funkcji trygonometrycznych: 1. Wzór podwójnego kąta dla sinusoidy: \[ \sin(2x) = 2 \sin(x) \cos(x) \] Ten wzór pozwala na wyrażenie sinusa podwójnego kąta za pomocą funkcji trygonometrycznych kąta...
Praca przedstawiona jest WORD w postaci tabelki Są tam wypisane wzory skróconego mnożenia: - kwadrat sumy - kwadrat różnicy - różnica kwadratów - sześcian sumy - sześcian różnicy - suma sześcianów - różnica sześcianów -...
{ x - y = 2 2x + y = -2 - wyznaczamy jedną niewiadomą z któregoś równania { x = 2 + y 2x + y = -2 - podstawiamy wyznaczone wyrażenie do drugiego równania układu { x = 2 + y 2(2 + y) + y = -2 - rozwiązujemy równanie...
KOD UCZNIAPRÓBNY EGZAMIN GIMNAZJALNYZ ZAKRESU PRZEDMIOTÓWMATEMATYCZNO–PRZYRODNICZYCHInformacje:1. Sprawdź, czy arkusz egzaminacyjny zawiera 12 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego.2. Pierwsza część arkusza zawiera 25...
Twierdzenie Pitagorasa Jeśli trójkąt jest prostokątny, to suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. Założenie: ABC jest prostokątny. Teza: a 2 + b 2 = c 2 Odwrotne twierdzenie...
Błażej Pascal- urodził się 19 czerwca 1623 roku w mie¬ście Clermont, zmarł w 1662 r. w Paryżu. Był znakomitym fran¬cuskim filozofem, matematykiem, fizykiem i publicystą, uwa¬żany powszechnie za następcę Kartezjusza (R. Descartes). Obrońca...
Zadania tekstowe z jedną niewiadomą: Zadanie 1. Suma dwóch kolejnych liczb całkowitych wynosi 93. Jakie to liczby? Zadanie 2. Suma dwóch kolejnych liczb całkowitych wynosi 86. Znajdź te liczby. Zadanie 3. Różnica dwóch liczb...
Dowód 1 W każdym trójkącie prostokątnym kwadrat długości najdłuższego boku (przeciwprostokątnej) jest sumą kwadratów długości dwóch pozostałych boków (przyprostokątnych). Dlaczego? To proste: Z czterech jednakowych trójkątów i dwóch...
Diofantos - z Aleksandrii, III wiek n.e. Był pierwszy matematyk, któy zajął się algebrą. Niewiele wiemy o jego życiu. Pewne szczegóły możemy poznać rozwiązując zadanie z Epifatium Diofanta zamieszczonego w antologii z XIV wieku mnicha Maksymusa...
boki trójkąta ABC mają długości |AB|=5, |AC|=9, |BC|=6. Na boku AB odmierzamy odcinek AD długości 2cm i przez punkt D prowadzimy prostą równoległą do boku AC. Prosta ta przecina BC w punkcie E. Oblicz obwód trapezu ADEC. Wykonaj odpowiedni rysunek.
Matematyka Matematyka była niegdyś rozumiana jako nauka o liczbach (arytmetyka) i figurach (bryłach) geometrycznych (geometria). Do dziś w popularnych encyklopediach określana jest jako nauka o wielkościach, czyli o stosunkach ilościowych i...
1. Bryłami obrotowymi nazywamy bryły, które powstają w wyniku obrotu figur płaskich wikół osi obrotu. 2. Wysokością walca nazywamy dwie podstawy i prostopadły ddo nich. 3. Twożąca stożka jest to odcinek łączący wierzchołek z dowolnym punktem...
Asymptoty ukośne istnieją wtedy i tylko wtedy gdy nie istnieje asymptota pozioma, stad wniosek ze jesli istnieje asymptota pozioma to nie istnieje asymptota ukośna w danym otoczeniu. Schemat badania asymptoty ukośnej: liczymy granice w + i -...
Regułka z twierdzenia Pitagorasa: Jeżeli trójkąt jest prostokątny to suma kwadratów długości dwóch krótszych boków trójkąta jest równakwadratowi długości najdłuższego boku. a2+b2=c2 a,b- długości przyprostokątnych c- długość...
W działalności gospodarczej realizowana jest zasada racjonalnego gospodarowania. Zasada ta orzeka, ze stojące do dyspozycji środki umożliwiające realizacje jakiegoś celu powinny być użyte w sposób gwarantujący maksymalna realizacje postanowionego...
Pitagoras żył miedzy ok. 572 - ok. 497 p.n.e. Urodził się na wyspie Samos, a zmarł w Metaponcie. Znany jest głównie z słynnego twierdzenia o trójkącie prostokątnym, powszechnie znanego jako twierdzenie Pitagorasa. Ów grecki matematyk, filozof,...