Ostrosłup
Ostrosłup – bryła geometryczna w postaci wielościanu, którego wszystkie ściany prócz podstawy zbiegają się w jednym punkcie zwanym wierzchołkiem (czyli są trójkątami o wspólnym wierzchołku).
Wysokość ostrosłupa to odległość od wierzchołka do płaszczyzny podstawy.
Ostrosłup foremny, ostrosłup prawidłowy posiada podstawę w postaci wielokąta foremnego, a jego wierzchołek znajduje się na prostej prostopadłej do podstawy i przechodzącej przez środek podstawy (dokładniej: prosta ta przechodzi przez środek okręgu opisanego na podstawie). Ściany ostrosłupa foremnego są trójkątami równoramiennymi).
Ostrosłup prawidłowy czworokątny, którego podstawą jest kwadrat, bywa czasem nazywany piramidą (taki bowiem kształt miały piramidy egipskie).
Ostrosłup ścięty jest częścią ostrosłupa zawartą pomiędzy podstawą a płaszczyzną przecinającą ten ostrosłup równolegle do podstawy.
Graniastosłup
Graniastosłup to wielościan, którego wszystkie wierzchołki są położone na dwóch równoległych płaszczyznach, zwanych podstawami graniastosłupa i którego wszystkie krawędzie leżące poza tymi podstawami są do siebie równoległe.
Wysokość graniastosłupa to odległość między jego podstawami.
Graniastosłup prosty to graniastosłup o prostokątnych ścianach bocznych. W przeciwnym wypadku jest to tzw. graniastosłup pochyły.
Graniastosłup prawidłowy to graniastosłup prosty o podstawach będących wielokątami foremnymi.
Graniastosłup archimedesowy (pryzma) to graniastosłup o krawędzi podstawy tej samej długości co wysokość. Graniastosłupy archimedesowe tworzą obok antygraniastosłupów jedną z dwóch nieskończonych serii wielościanów półforemnych.
Walec
Walec jest bryłą geometryczną powstałą w wyniku obrotu prostokąta wokół jednego z jego boków. Podstawą walca oraz jego górną częścią jest koło, a jego szerokość jest w każdym miejscu taka sama.
Walcami określa się również inne bryły i powierzchnie, których podstawą może być elipsa, hiperbola, lub parabola, czyli krzywe stożkowe. Mówimy wówczas odpowiednio o walcu eliptycznym, hiperbolicznym i parabolicznym, przy czym jedynie pierwszy z nich może stanowić bryłę, a pozostałe dwa są powierzchniami nieskończonymi.
Wzory, rysunki dostępne w załączniku poniżej