Ruchy lądotwórcze
Epejrogeneza, ruchy lądotwórcze, ruchy epejrogeniczne, powolne ruchy wynoszące lub zanurzające w głąb litosfery znaczne fragmenty skorupy ziemskiej. Ruchom tego typu nie towarzyszą deformacje ani fałdowania warstw skalnych.
Ciągłemu procesowi wynoszenia, od momentu stopnienia lodowca, podlega Fennoskandia. Ruchy epejrogeniczne dają się tam mierzyć za pomocą instrumentów geodezyjnych, np. wybrzeża Zatoki Botnickiej podnoszą się o ok. 1 cm rocznie.
Ruchy górotwórcze
Ruchy górotwórcze, górotwórczość, wielkoskalowe ruchy skorupy ziemskiej prowadzące do powstania gór, stanowiące część cyklu orogenicznego.
W efekcie orogenezy następuje sfałdowanie osadów w obrębie geosynklin oraz ich wypiętrzenie w postaci łańcuchów gór fałdowych, czemu towarzyszą powszechnie procesy magmatyzmu i metamorfizmu. Na "usztywnionych", nie podlegających fałdowaniu fragmentach skorupy ziemskiej (tzw. kratonach) orogeneza powoduje powstawanie pionowych przemieszczeń, wzdłuż linii uskoków, tworzących często góry zrębowe.
W historii Ziemi wyróżnia się cztery główne orogenezy: prekambryjską, kaledońską, hercyńską oraz alpejską. W każdej z nich wydziela się szereg faz górotwórczych o zwiększonym nasileniu ruchów górotwórczych, występujących tylko na niektórych obszarach Ziemi.
Rodzaj Powstawanie – przykłady.
- Fałdowe - tworzą się wskutek sfałdowania mas skalnych: Himalaje, Alpy, Karpaty, Pireneje, Andy, Atlas
- Zrębowe - powstają wskutek pionowych przemieszczeń wzdłuż uskoków skalnych: Ural, Harz, Sudety
- Wulkaniczne - są wynikiem erupcji wulkanicznych: góry Kamczatki, Islandii, Japonii
Zjawiska wulkaniczne
wulkanizm - odgrywa on dużą role w kształtowaniu ziemi. Zjawiska wulkaniczne związane są z przebiciem i wydostaniem się magmy z głębi ziemi na jej powierzchnię. Płynny stop skalny - magma, po wydobyciu się na powierzchnię nosi nazwę lawa. Magma wydobywa się na powierzchnię ziemi przez krater lub szczeliny. Wydobywanie się magmy na powierzchnię nosi nazwę erupcji.
a). rodzaje law:
- lawy rzadkie, zasadowe - bazaltowe, o małej lepkości tworzą wulkany tarczowe, o rozległych ładnie nachylonych stokach.
- lawy gęste, kwaśne - krzemionkowe, wolno spływające często zamykają ujście krateru, tworzące czopy w kominach wulkanicznych. Tworzą stożki wulkaniczne o stromych i wysokich stokach.
b). rodzaje wulkanów:
- efuzywne (lawowe) - podczas erupcji wydobywa się tylko lawa
- eksplozywne - podczas erupcji wydobywają się z nich utwory piroklastyczne
- stratowulkany (wulkany mieszane) - podczas erupcji wyrzucane są utwory piroklastyczne i lawa (takie wulkany występują najczęściej)
Podczas każdej erupcji wydostają się różne gazy: CO2, SO2, H2S, HCl i para wodna
Rodzaj - Częstotliwość erupcji - Przykłady:
- Czynne okresy spokoju przerywane częstymi erupcjami - Etna, Wezuwiusz, Stromboli
- Drzemiące erupcje za pamięci ludzkiej, od dłuższego czasu nie notowane - Tambora, Fudżi – Jama
- Wygasłe erupcje nie notowane za pamięci człowieka stożki wulkaniczne w Polsce, Niemczech i Francji
Najwięcej wulkanów znajduje się wzdłuż wybrzeży Oceanu Spokojnego. W Europie najwięcej czynnych wulkanów znajduje się we Włoszech (Stromboli, Vulcano, Etna, Wezuwiusz) i na Islandii (Askja i Hekla)
Budowa, kształt i rozmiary wulkanów.
Najczęściej wulkany mają postać góry o kształcie stożka. Wulkan wyrzucając w powietrze materiał skalny i lawę powoduje jego opadanie dookoła krateru tworząc formy mniej lub bardziej stożkowate. Rzadko wulkany mają kształt idealnego stożka. Najbardziej regularne formy tworzone są podczas erupcji mieszanych, kiedy to równocześnie, lub w stosunkowo krótkich odstępach czasu, następuje wypływ lawy i wyrzucany jest materiał sypki. Nachylenie zbocz stożków wulkanicznych jest różne i waha się w przedziale od 30O do 45O. Bardzo mały kąt nachylenia równy ok. 2O mają wulkany tarczowe, które utworzyły się przez wylew ruchliwej lawy. Wulkany tarczowe nie przypominają swoją budową stożka, co jest spowodowane dużą ruchliwością zasadowej lawy, ubogiej w krzemionkę, która nie rozlewa się równomiernie na wszystkie strony. Takim wulkanem jest hawajski olbrzym Mauna Loa.
Wiele wulkanów w czasie swej erupcji powoduje zmianę wysokości stożka wulkanicznego. Może następować redukcja wysokości tj. wtedy, gdy gwałtowny wybuch powoduje rozerwanie górnej części góry i tym samym obniżenie jej wysokości lub zwiększenie wysokości przez odkładanie materiałów skalnych na stożku wulkanicznym podczas spokojnych wypływów lawy. Wielkość wulkanów jest dość dużym przedziałem. Do największych należą wulkany hawajskie - Mauna Kea - 4214 m i Mauna Loa - 4168 m n.p.m. Ponieważ wyrastają z głębin morskich sięgających 5000 m, są największymi górami świata. Największym wulkanem na świecie jest Aconcagua - 6960 m.
Erupcje
Ze względu na rodzaj wydostających się na powierzchnię materiałów wyróżniamy wulkany lawowe, czyli efuzywne, gazowe, czyli eksplozywne oraz mieszane, czyli stratowulkany. Najczęstsze są mieszane, z których wylewa się lawa i wyrzucane są materiały piroklastyczne. W najwyższej części wulkanów mieszanych tworzą się nieraz wielkie zagłębienia - kaldery (hiszp. caldera - kotły); są to częste formy kraterów, które tworzą się pod koniec wybuchów na skutek obniżenia się poziomu lawy i zapadnięcie się środkowej części. Znacznie rzadsze są wulkany czysto lawowe, często występujące we dawniejszych epokach geologicznych oraz gazowe, które nie wydalają w ogóle lawy. Same erupcje mogą następować na różne sposoby, według których stworzono ich podział.
Erupcje dzieli się na:
a). centralne - związane z jednym punktem (centrum wybuchu), czyli kanałem kształtu cylindrycznego, który powierzchnię Ziemi łączy z podziemnym ogniskiem magmowym. Kanałem tym wydobywają się materiały wulkaniczne. Zakończony jest on lejkowatym zagłębieniem, które powstało podczas rozrywania się skał w czasie wybuchu, czyli kraterem.
- typ hawajski - wylew ruchliwej lawy przy dość spokojnym wydzielaniu się gazów. Z powierzchni jeziora lawowego mogą być wyrzucane wytryski ciekłej lawy w czasie gwałtowniejszego wydobywania się gazów. Uniesione kropelki ciekłej lawy mogą zastygać w powietrzu w postaci szklistych włosków, zwanych włosami Pele (od hawajskiej bogini ognia Pele).
- typ Stromboli - mniej ruchliwa lawa styka się z powietrzem w kraterze, zamknięte gazy uchodzą bardziej gwałtownie wśród eksplozji, które mogą być rytmiczne lub niemal ciągłe. Zakrzepnięta lawa, często rozżarzona, zostaje wyrzucona w postaci bomb wulkanicznych lub mniejszych okruchów, które w czasie gwałtowniejszych eksplozji mogą wznosić się w postaci świecących chmur. Nazwa tego typu pochodzi od wulkanu Stromboli, którego wybuchy normalnie przebiegają w ten sposób; mniejsze erupcje odbywają się w odstępach czasu od kilku minut do godziny.
- typ Vulcano - pochodzący od wulkanu tej nazwy, również z grupy Wysp Liparyjskich. Lawa jest bardziej lepka i szybko zastyga na powierzchni w czasie dzielącym poszczególne wybuchy. Gromadzące się pod zastygłą powierzchnią skorupy gazy wybuchają rzadziej, lecz z większą gwałtownością. Tworzące się nad kraterem chmury wulkaniczne są ciemne i przyjmują kształt zbliżony do kalafiora.
- typ Wezuwiusza - gwałtowniejsze wybuchy rodzaju Stromboli i Vulcano. Nagłe wybuchy bogatej w gazy lawy następują po dłuższych przerwach spokoju lub słabej aktywności. W wyniku opróżnienia kanału wulkanicznego do znacznej głębokości wskutek bocznych wycieków lawy zanika powierzchniowy nacisk na niżej leżącą magmę. Gwałtownie wyrzucana wtedy lawa wznosi się na znaczą wysokość w postaci gęstych chmur dając opady popiołów o dużym zasięgu. W czasie najgwałtowniejszych wybuchów Wezuwiusza wielkie ilości gazów i pary wodnej wznoszą się na wysokość kilku kilometrów tworząc z daleka widoczne chmury, często o charakterystycznym kształcie pinii. Ten rodzaj wybuchu opisał pierwszy Pliniusz w czasie katastrofalnego wybuchu w roku 79; nosi on też nieraz nazwę typu Pliniusza.
- typ Pele - charakteryzuje wulkany o dużej lepkości lawy i gwałtowności eksplozji. Ucieczka gazów jest utrudniona przez tworzenie się zakrzepłej powierzchni. Wydobywająca się powstałymi pod naciskiem gazów szczelinami magma gwałtownie wypływa potokami lawowymi, którym towarzyszą wydzielające się duże ilości gazów i par.
b). szczelinowe (linearne) - produkty wulkaniczne wydobywają się podłużnymi szczelinami. Lawa wypełniająca szczelinę przelewa się w jedną lub dwie strony. Tą drogą powstają pokrywy obejmujące czasem duże obszary.
Erupcje linearne są rzadsze od centralnych. Duże pokrywy bazaltowe, pochodzące z dawnych okresów geologicznych świadczą o tym, że przed dziesiątkami milionów lat ten typ erupcji był dosyć pospolity. Na niektórych obszarach wulkanicznych można odtworzyć zanikanie dawnych erupcji linearnych, których miejsce zajmują erupcje centralne. Niemal regułą jest, że erupcje linearne mają charakter law zasadowych typu bazaltowego; zawartość gazów w tych lawach jest niewielka. Dlatego też wylewom lawy erupcji linearnych rzadko towarzyszą potężne eksplozje, mają one charakter słabszych wybuchów i prowadzą do wytworzenia tylko niewielkich stożków wulkanicznych. Najczęściej są to otwarte szczeliny, którymi lawa wydobywa się spokojnie. Szczeliny czy rowy obfitują nieraz w drobne kratery ułożone wzdłuż linii wyznaczających przebieg szczeliny lub rowu.
c). arealne - powstać one mogą wtedy, gdy magma batolitu lub lakolitu dojdzie do powierzchni Ziemi nie kanałem ani szczeliną lecz całą powierzchnią. Nastąpić to może przez przetopienie skał nadległych lub przez przedarcie się magmy na znacznej przestrzeni. Nie znamy współczesnych erupcji arealnych, prawdopodobnie jednak miały one duże znaczenie, kiedy istniały korzystne warunki do wydobywania się wielkich mas magmy na powierzchnię. Erupcje arealne charakteryzują się tym, że występujące na powierzchni skały wylewne przechodzą stopniowo w bardziej gruboziarniste skały głębinowe.
Do tego typu erupcji zalicza się wulkaniczną płytę utworzoną z riolitów w Yellowstone Park (Stany Zjednoczone Am.). Zajmuje ona powierzchnię około 10000 km2 przy dużej miąższości. Obecność licznych gejzerów ogranicza się do obszaru riolitowego, co wskazuje na stały dopływ ciepła z głębi. Ponieważ wulkanizm tego obszaru zakończył się w pliocenie, tak dużym źródłem ciepła może być tylko batolit granitowy leżący w głębi.
Lawy i materiały piroklastyczne
Jak już wcześniej pisałam produktami erupcji wulkanów są lawy, materiały piroklastyczne i gazy. Częściowo mogą też występować skały wyrwane z podłoża podczas wybuchów. Lawy stanowią ciekły stop z przeważającą ilością krzemionki (ok. 50%). Kwaśne lawy zawierają jej więcej niż zasadowe. Temperatura law wynosi ok. 1000OC. Szybkość stygnięcia potoku lawy zależy od jej grubości. Cienkie pokrywy lawowe stygną szybko, ale lawa wypełniająca zagłębienia terenu może zastygnąć latami. Stygnąca, posuwająca się lawa wygląda inaczej, aniżeli ruchliwe potoki blisko miejsca wypływu. Są to nieregularne zwały zastygłych już bloków lawy, poruszane przez lawę ciekłą znajdującą się głębiej. Czasem u czoła takiego potoku lawy znajdują się duże, nawet dwumetrowe bloki, przesuwane na setki metrów pod naporem lawy. Takie potoki lawowe niszczą każdą napotkaną przeszkodę, burząc największe drzewa i domy. Nieraz wyrywają one skały z podłoża i zawlekają je na inne miejsca.
Ilości wyrzucanych materiałów piroklastycznych są nieraz olbrzymie. W czasie gwałtownych wybuchów wulkan wyrzuca bloki skalne o masie kilkudziesięciu, a nierzadko kilkuset kilogramów. Znane są przypadki wyrzucania nawet bloków kilkutonowych. Okrągłe bloki, najczęściej wielkości od pięści do głowy ludzkiej, noszą nazwę bomb wulkanicznych. Często są one spiralnie poskręcane wskutek ruchu obrotowego w powietrzu, co wskazuje na to, że te bloki nie były jeszcze zupełnie zastygłe w czasie erupcji. Drobniejszy materiał, wielkości od grochu do orzecha, nosi nazwę lapilli, używana jest także nazwa rapilli. Jeszcze drobniejszy materiał nosi nazwę piasków i popiołów wulkanicznych. Powstały one z rozpylonej lawy, krzepnącej w powietrzu, lub z wyrzuconych wybuchem pokruszonych i rozdrobnionych skał wulkanicznych. Najdrobniejszy materiał określany jest jako pyły wulkaniczne. Przez scementowanie drobnych materiałów piroklastycznych tworzą się tufy wulkaniczne.
Materiały piroklastyczne mogą być wyrzucane w czasie wybuchów na znaczną wysokość; zależy to zarówno od siły wybuchu jak i wielkości wyrzucanych materiałów. Najbliżej miejsca wybuchu opadają duże bloki skalne. W czasie niektórych wybuchów Wezuwiusza obserwowano kilkutonowe bloki wyrzucane na wysokość stu metrów; spadały one w odległości kilkudziesięciu metrów od krateru; niekiedy te olbrzymie bloki znajdowano w odległości stu kilkudziesięciu, a nawet dwustu metrów.
W czasie jednego wybuchu wulkanu Cotopaxi w Ekwadorze blok kilkunastotonowy został wyrzucony na odległość ponad dziesięciu kilometrów. Podczas wybuchu Krakatau w roku 1883 małe bomby wulkaniczne wyrzucane na wielkie wysokości, spadały w odległości kilkudziesięciu kilometrów. Popioły wulkaniczne znajdowano w odległościach dochodzących do 2500 km, a najdrobniejsze pyły okrążyły Ziemię wywołując w ciągu kilku miesięcy różne efektowne zjawiska optyczne w atmosferze, jak np. niesamowicie barwne zachody słońca. Popioły wulkaniczne wyrzucone w czasie wybuchu Wezuwiusza w roku 1906 dotarły aż nad Bałtyk.
Zjawiska towarzyszące erupcjom
Szczyt Wezuwiusza jak gdyby płonął potężnym ogniem, a stoki góry rozświetlały dziesiątki ognisk rozżarzonej lawy. Wysoko rozszalała się potężna burza elektryczna, dająca niezwykłe efekty świetlne.
W połowie sierpnia mieszkańców okolicznych wysp opanowała panika. 26 sierpnia ciągłe błyskawice przelatywały nad wulkanem, silne odgłosy słychać było w Batawii, odległej o 150 km, którą jednocześnie nawiedziło trzęsienie ziemi. Następnego dnia o 7 rano niebo tak zachmurzyło się, że nawet w Batawii trzeba było zaświecić lampy. Ciemności zapanowały również nad cieśniną i okolicznymi miastami. Zaczął padać silny deszcz popiołów i nastąpiły powtarzające się wstrząsy podziemne. Bez przerwy słychać było grzmoty, podobne do wystrzałów armatnich, oraz szczególne trzaski, prawdopodobnie wywołane ocieraniem się o siebie w powietrzu kamieni, wyrzucanych w górę i spadających na dół. Słup pary, wysokości około 30 km, wzniósł się w górę i w wyższych warstwach atmosfery rozpostarł na kształt olbrzymiego baldachimu. Tę ogromną chmurę oświetlały od czasu do czasu zygzakowate błyskawice, a o zachodzie słońca wyglądała ona jak krwistoczerwona zasłona.
Jak widać z powyższych fragmentów wulkany nie tylko są groźne, ale i piękne.
Zjawiska plutoniczne
Zjawiska geologiczne związane z wdzieraniem się magmy w skorupę ziemską bez przedostania się jej na powierzchnię Ziemi, w przeciwieństwie do zjawisk wulkanicznych. Efektem zjawisk plutonicznych jest powstanie intruzji magmy. Charakterystycznymi formami zjawisk plutonicznych są batolity i lakolity.
Magma, stopiona skała powstała w głębi skorupy ziemskiej lub w płaszczu Ziemi. W skład magmy wchodzą krzemiany i glinokrzemiany sodu, potasu, wapnia, magnezu i żelaza, w mniejszej ilości występują w niej tlenki i siarczki, rozpuszczone gazy, głównie para wodna i dwutlenek węgla. W wyniku różnej zawartości krzemionki, która waha się w granicach 35-80%, rozróżnia się magmy kwaśne (powyżej 60%) i zasadowe (poniżej 60%). Magma wydobywająca się na powierzchnię Ziemi nosi nazwę lawy. Produktami krzepnięcia magmy są skały magmowe.
Intruzja magmy, wdarcie się plastycznej masy skalnej (magmy) w wyższe partie skorupy ziemskiej. Bezpośrednią przyczyną zachodzenia intruzji magmy są potężne ciśnienia tworzące się we wnętrzu skorupy ziemskiej w związku z ruchami górotwórczymi.
Nazwa ta obejmuje także masy skalne utworzone w głębszych warstwach Ziemi np.: batolit, dajka, lakolit.
Batolit, skała powstała przez intruzję magmy, złożona ze skał głębinowych, zajmujących przestrzeń o znacznych rozmiarach, od kilku do kilkuset kilometrów wszerz i wzdłuż, kilku kilometrów wzwyż.
Często zawiera złoża kruszcowe. Spąg batolitu jest nieosiągalny dla bezpośrednich obserwacji. W Polsce w Tatrach Wysokich.
Lakolit, lakkolit, jedna z charakterystycznych form zjawisk plutonicznych związanych z intruzją (wdzieraniem się magmy) w skorupę ziemską i nieprzedostaniem się jej na powierzchnię.
Lakolit ma kształt bochenka, soczewki lub grzyba, w przeciwieństwie do batolitu występuje blisko powierzchni Ziemi powodując wybrzuszenie się warstw skalnych nad intruzją w kształcie kopuły.
Trzęsienia ziemi
Krótkotrwałe drgania skorupy ziemskiej w wyniku nagłych przesunięć mas skalnych wewnątrz litosfery. Badaniem zjawisk związanych z trzęsieniem ziemi zajmuje się sejsmologia.
Dzieli się je na:
· płytkie - źródło na głębokości do 70 km
· pośrednie - źródło na głębokości od 70 do 300 km
· głębokie - źródło na głębokości od 300 do 700 km
Trzęsienie ziemi trwa od kilku do kilkunastu sekund. Ognisko trzęsienia ziemi to hipocentrum, natomiast odpowiadający mu punkt na powierzchni ziemi to epicentrum. Trzęsienia ziemi są częstym zjawiskiem na kuli ziemskiej (ok. 50 000 rocznie). Trzęsienia ziemi występują tam gdzie zachodzą kolizje wielkich płyt litosfery. Do pomiarów trzęsień ziemi korzysta się ze skali Richtera (od 0 do 9 - każdy stopień to dziesięciokrotnie większe trzęsienie) lub skali Mercallego (od 0 do 12 - ocenia widoczne skutki trzęsienia).
Rodzaj Skutki i przyczyny % udziału we wszystkich trzęsieniach ziemi:
- Tektoniczne bardzo groźne, katastrofalne wywołane ruchami płyt litosfery 90 %
- Wulkaniczne mniej groźne, powodują je erupcje wulkaniczne 7%
- Zapadliskowe najmniej groźne, wywołane zapadaniem się pustych przestrzeni w skorupie ziemskiej 3%