Nie pamiętasz hasła?Hasło? Kliknij tutaj
Suma wszystkich energii, jaką posiadają wszystkie drobiny danej substancji, jest energią wewnętrzną tej substancji. Na tę energię składają się energie kinetyczne drobin oraz energie potencjalne oddziaływań między nimi. Podgrzewanie substancji w dowolnym stanie skupienia prowadzi do wzrostu energii jej drobin i tym samym do wzrostu energii wewnętrznej substancji.
Aby zamienić ciało stałe w ciecz, należy drobinom tego ciała dostarczyć odpowiednią ilość energii, dzięki której pokonają one duże siły oddziaływań łączące je ze sobą w stanie stałym. Należy podgrzać je do odpowiednio wysokiej temperatury nazywanej temperaturą topnienia , która jest różna dla różnych substancji. Topnienie to zachodzący w temperaturze topnienia proces polegający na zmianie stanu stałego w stan ciekły. Podtrzymanie procesu topnienia wymaga ciągłego dostarczania ciepła,...
Temperatura – T T [K] = t [°C] + 273,15 [K] Wzór ten jest tylko metodą przeliczania skali i z formalnego punktu widzenia nie jest on poprawny. Temperatura jest wielkością,która zależy od średniej energii kinetycznej przypadającej na jedną drobinę substancji.Im ta energia jest wyższa, tym wyższą temperaturę wskazuje termometr. W układzie jednostek SI temperaturę mierzymy w kelwinach [K]. Ciepło właściwe substancji– c w Im większe ciepło właściwe, tym więcej...
Zetknięcie ze sobą dwóch ciał o różnych temperaturach powoduje przekazywanie energii kinetycznej drobinom ciała o temperaturze niższej przez drobiny ciała o temperaturze wyższej. Taki sposób przekazywania energii nazywamy przepływem ciepła . Proces ten trwa tak długo, aż wyrównają się temperatury obu ciał, to znaczy aż średnia energia kinetyczna przypadająca na jedną drobinę każdego ciała będzie taka sama.
Właściwości fizyczne każdej substancji zależą od jej budowy wewnętrznej. Siły oddziaływań między drobinami substancji są największe, gdy jest ona w stanie stałym, mniejsze gdy jest w stanie ciekłym i najmniejsze, gdy jest w stanie gazowym. Z tego powodu drobiny w stanie stałym mają najmniej swobody, mogą drgać tylko wokół ustalonych położeń równowagi i trudno jest zmienić kształt ciał stałych . Na skutek dużych oddziaływań drobiny ciał stałych są tak blisko siebie, że już bliżej być nie...
Wrzenie wymaga dostarczenia cieczy odpowiednio dużej energii, dzięki której drobiny w całej objętości cieczy mogą pokonać siły łączące je ze sobą i uzyskać swobodę właściwą dla drobin gazu. Należy więc ciecz podgrzać do odpowiednio wysokiej temperatury nazywanej temperaturą wrzenia . Wrzenie to zachodzący w temperaturze wrzenia proces zamiany cieczy w gaz. Cała energia cieplna dostarczana substancji w czasie wrzenia jest zużywana na zmianę budowy wewnętrznej i dlatego jej temperatura w...
Parowanie to zmiana cieczy w gaz zachodząca w temperaturze niższej od temperatury wrzenia. Polega ona na uwalnianiu się drobin cieczy ze swobodnej powierzchni cieczy. Gdy drobiny z tej powierzchni odparują, zaczyna się parowanie drobin z kolejnej warstwy. W ten sposób stopniowo może odparować cała ciecz.Podczas parowania ciecz pobiera ciepło z otoczenia.
Krzepnięcie to proces odwrotny do topnienia i zachodzi w temperaturze krzepnięcia, która jest równa temperaturze topnienia.
Ciała stałe dzielimy na krystaliczne i amorficzne. Drobiny w ciałach krystalicznych tworzą uporządkowany układ, który nazywamy siecią krystaliczną. W ciałach amorficznych drobiny są ułożone przypadkowo i przypominają układ drobin charakterystyczny dla cieczy, który został nagle zamrożony i utrwalony w postaci ciała stałego. Budowa wewnętrzna ciał stałych ma wpływ na ich właściwości fizyczne.
Odwracalne odkształcenie ciał stałych nazywamy odkształceniem sprężystym , dla którego słuszne jest prawo Hooke’a: gdzie Δl=l−l 0 jest wydłużeniem spowodowanym siłą F . Współczynnik sprężystości k zależy od pola powierzchni przekroju poprzecznego pręta S i od jego długości początkowej l 0 , zgodnie ze wzorem: w którym E to współczynnik proporcjonalności nazywany modułem Younga , zależny wyłącznie od rodzaju materiału, z którego wykonany jest pręt. Prawo Hooke’a...
Ciśnienie jest spowodowane przez siłę F naciskającą na jakąś powierzchnię o polu S . Wartość tej siły przypadająca na jednostkową powierzchnię nazwana została ciśnieniem: Jednostką ciśnienia jest paskal – Pa. Ciśnienie w gazach jest spowodowane zderzeniami cząsteczek gazu ze ściankami naczynia i ze wszystkimi przedmiotami, które znajdują się w gazie.
Ciała stałe, które pod wpływem działającej na nie siły odkształcają się w sposób nietrwały (wyginają się – trampolina, wydłużają się – sprężyna, skręcają się – metalowe pręty itp.) mają właściwości sprężyste. Jeśli ciało ma właściwości sprężyste, to po usunięciu siły przyjmuje pierwotny kształt.
Właściwości plastyczne mają te ciała stałe, które pod wpływem działającej na nie siły odkształcają się w sposób trwały. Są to np.: plastelina, folia aluminiowa, glina itp.
Ciśnienie atmosferyczne to ciśnienie wywierane przez ciężar powietrza nad Ziemią i wyraża się takim samym wzorem jak ciśnienie hydrostatyczne. Ciśnienie atmosferyczne najczęściej podajemy w hektopaskalach – hPa (1 hPa = 100 Pa). W górach, gdzie słup powietrza nad Ziemią jest mniejszy, ciśnienie atmosferyczne jest mniejsze niż na terenach nizinnych. Ponieważ gazy są ściśliwe, to gęstość powietrza na różnych wysokościach nad Ziemią jest różna, co zgodnie z powyższym wzorem ma też wpływ na...
Na każde ciało zanurzone w cieczy działa siła wyporu skierowana pionowo do góry i równa ciężarowi cieczy wypartej przez to ciało. W= d cieczy ⋅ V zanurzona ⋅ g Ciśnienie hydrostatyczne wywierane na dolną powierzchnię ciała zanurzonego w cieczy jest większe niż ciśnienie wywierane na jego górną powierzchnię. Ta różnica ciśnień jest przyczyną występowania siły wyporu. Siła wyporu, jak pokazuje wzór, zależy od gęstości cieczy i od tej części objętości ciała, która jest...
Ciśnienie w cieczach i gazach rozchodzi się jednakowo we wszystkich kierunkach. Przykład: Dzięki temu, że ciśnienie wywierane przez siłę F przesuwającą tłok, jest we wszystkich kierunkach takie samo, to przez dziurki w naczyniu ciecz wypływa również w kierunku przeciwnym do kierunku działania siły. Ciśnienie powietrza pompowanego do kół samochodu lub roweru również jest w każdym miejscu jednakowe.
Zasada zachowania energii, którą w nauce o cieple nazywamy zasadą bilansu cieplnego, wymaga, aby ilość energii cieplnej Q 1 oddanej przez ciało cieplejsze była równa energii cieplnej Q 2 pobranej przez ciało zimniejsze: Q 1 = Q 2 , m 1 ⋅ c w1 ⋅ ΔT 1 = m 2 ⋅ c w2 ⋅ ΔT 2 .
Właściwości kruche mają te ciała stałe, które pod wpływem działającej na nie siły łamią się lub kruszą. Są to np.: szkło, kreda, niektóre tworzywa sztuczne.
Skraplanie to proces odwrotny do wrzenia i parowania. Polega na zmianie stanu gazowego w stan ciekły. Podczas skraplania ciecz musi oddawać ciepło do otoczenia.
Sublimacja to bezpośrednia zmiana stanu stałego w gazowy z pominięciem stanu ciekłego. Resublimacja to proces odwrotny do sublimacji polegający na bezpośredniej zmianie stanu gazowego w stały.
Stan skupienia materii podstawowa forma, w jakiej występuje substancja określająca jej podstawowe własności fizyczne. Własności substancji wynikają z układu oraz zachowania cząsteczek tworzących daną substancję. Bardziej precyzyjnym określeniem...