Caballos Formation
Stratigraphic range: Aptian-Albian
~
TypeGeological formation
UnderliesHondita Formation
OverliesYaví & Saldaña Formations
Thicknessup to 411 m (1,348 ft)
Lithology
PrimarySandstone, shale, siltstone
OtherLimestone, coal
Location
Coordinates3°49′18.9″N 75°21′22.4″W / 3.821917°N 75.356222°W / 3.821917; -75.356222
RegionCaquetá, Huila, Putumayo & Tolima Departments
Country Colombia
ExtentVSM & Caguán-Putumayo Basin
Central & Eastern Ranges, Andes
Type section
Named forCerro Caballos
Named byCorrigan
LocationOlaya Herrera
Year defined1967
Coordinates3°49′18.9″N 75°21′22.4″W / 3.821917°N 75.356222°W / 3.821917; -75.356222
Approximate paleocoordinates2°54′S 47°24′W / 2.9°S 47.4°W / -2.9; -47.4
RegionTolima
Country Colombia
Thickness at type section411 m (1,348 ft)

Paleogeography of Northern South America
105 Ma, by Ron Blakey

The Caballos Formation (Spanish: Formación Caballos, KI) is a geological formation of the Upper Magdalena Valley (VSM), Caguán-Putumayo Basin, Central and Eastern Ranges of the Colombian Andes. The sandstone and shale formation dates to the Middle Cretaceous period; Aptian to Albian epochs and has a maximum thickness of 411 metres (1,348 ft).

Etymology

The formation was defined and named in 1967 by Corrigan after Cerro Caballos, to the west of Olaya Herrera, Tolima.[1]

Description

Lithologies

The Caballos Formation has a maximum thickness of 411 metres (1,348 ft) in the Quebrada Bambucá and is characterized by a lower sequence of fine to coarse sandstones, of lithic arenite, quartz arenite and feldspar arenite composition, a middle section of fossiliferous black shales and siltstones, intercalated by micritic limestones and coals and very fine sandstones. The upper part of the formation contains conglomerates and glauconitic sandstones.[1]

Stratigraphy and depositional environment

The Caballos Formation in some parts concordantly overlies the Yaví Formation and in other parts rests unconformably on the Saldaña Formation and Ibagué Batholith.[2] The formation is overlain by the Hondita Formation. The age has been estimated to be Aptian to Albian. Stratigraphically, the formation is time equivalent with the Une, Aguardiente, Simijaca, El Peñón, Capotes, Tablazo, Tibú-Mercedes and Pacho Formations.[3] The formation has been deposited in a fluvial to estuarine and shallow marine environment.[4]

The Caballos Formation is a source, reservoir and seal rock in the Upper Magdalena Valley,[5][6] and a source and reservoir rock in the Caguán-Putumayo Basin.[7][8] The Orito and Moqueta Fields of the latter basin produce from Caballos reservoirs.

Fossil content

The formation has provided fossils of Heminautilus etheringtoni,[9] Araucarites sp., Brachyphyllum sp., Cladophlebis sp., and Weichselia sp.,[10] as well as many types of pollen.[11]

Outcrops

Caballos Formation is located in Tolima Department
Caballos Formation
Type locality of the Caballos Formation in Tolima

The Caballos Formation is apart from its type locality, found in Huila, Tolima and Putumayo Departments.

Regional correlations

Stratigraphy of the Llanos Basin and surrounding provinces
MaAgePaleomapRegional eventsCatatumboCordilleraproximal Llanosdistal LlanosPutumayoVSMEnvironmentsMaximum thicknessPetroleum geologyNotes
0.01Holocene
Holocene volcanism
Seismic activity
alluviumOverburden
1Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
GuayaboSoatá
Sabana
NecesidadGuayaboGigante
Neiva
Alluvial to fluvial (Guayabo)550 m (1,800 ft)
(Guayabo)
[12][13][14][15]
2.6Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3MessinianAndean orogeny 3
Foreland
MarichuelaCaimánHonda[14][16]
13.5LanghianRegional floodingLeónhiatusCajaLeónLacustrine (León)400 m (1,300 ft)
(León)
Seal[15][17]
16.2BurdigalianMiocene inundations
Andean orogeny 2
C1Carbonera C1OspinaProximal fluvio-deltaic (C1)850 m (2,790 ft)
(Carbonera)
Reservoir[16][15]
17.3C2Carbonera C2Distal lacustrine-deltaic (C2)Seal
19C3Carbonera C3Proximal fluvio-deltaic (C3)Reservoir
21Early MiocenePebas wetlandsC4Carbonera C4BarzalosaDistal fluvio-deltaic (C4)Seal
23Late Oligocene
Andean orogeny 1
Foredeep
C5Carbonera C5OritoProximal fluvio-deltaic (C5)Reservoir[13][16]
25C6Carbonera C6Distal fluvio-lacustrine (C6)Seal
28Early OligoceneC7C7PepinoGualandayProximal deltaic-marine (C7)Reservoir[13][16][18]
32Oligo-EoceneC8UsmeC8onlapMarine-deltaic (C8)Seal
Source
[18]
35Late Eocene
MiradorMiradorCoastal (Mirador)240 m (790 ft)
(Mirador)
Reservoir[15][19]
40Middle EoceneRegaderahiatus
45
50Early Eocene
SochaLos CuervosDeltaic (Los Cuervos)260 m (850 ft)
(Los Cuervos)
Seal
Source
[15][19]
55Late PaleocenePETM
2000 ppm CO2
Los CuervosBogotáGualanday
60Early PaleoceneSALMABarcoGuaduasBarcoRumiyacoFluvial (Barco)225 m (738 ft)
(Barco)
Reservoir[12][13][16][15][20]
65Maastrichtian
KT extinctionCatatumboGuadalupeMonserrateDeltaic-fluvial (Guadalupe)750 m (2,460 ft)
(Guadalupe)
Reservoir[12][15]
72CampanianEnd of riftingColón-Mito Juan[15][21]
83SantonianVilleta/Güagüaquí
86Coniacian
89TuronianCenomanian-Turonian anoxic eventLa LunaChipaqueGachetáhiatusRestricted marine (all)500 m (1,600 ft)
(Gachetá)
Source[12][15][22]
93Cenomanian
Rift 2
100AlbianUneUneCaballosDeltaic (Une)500 m (1,600 ft)
(Une)
Reservoir[16][22]
113Aptian
CapachoFómequeMotemaYavíOpen marine (Fómeque)800 m (2,600 ft)
(Fómeque)
Source (Fóm)[13][15][23]
125BarremianHigh biodiversityAguardientePajaShallow to open marine (Paja)940 m (3,080 ft)
(Paja)
Reservoir[12]
129Hauterivian
Rift 1Tibú-
Mercedes
Las JuntashiatusDeltaic (Las Juntas)910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun)[12]
133ValanginianRío NegroCáqueza
Macanal
Rosablanca
Restricted marine (Macanal)2,935 m (9,629 ft)
(Macanal)
Source (Mac)[13][24]
140BerriasianGirón
145TithonianBreak-up of PangeaJordánArcabucoBuenavista
Batá
SaldañaAlluvial, fluvial (Buenavista)110 m (360 ft)
(Buenavista)
"Jurassic"[16][25]
150Early-Mid Jurassic
Passive margin 2La Quinta
Montebel

Noreán
hiatusCoastal tuff (La Quinta)100 m (330 ft)
(La Quinta)
[26]
201Late Triassic
MucuchachiPayandé[16]
235Early Triassic
Pangeahiatus"Paleozoic"
250Permian
300Late Carboniferous
Famatinian orogenyCerro Neiva
()
[27]
340Early CarboniferousFossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche)900 m (3,000 ft)
(Cuche)
360Late Devonian
Passive margin 1Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones)2,400 m (7,900 ft)
(Farallones)
[24][28][29][30][31]
390Early Devonian
High biodiversityFloresta
(387-400)
El Tíbet
Shallow marine (Floresta)600 m (2,000 ft)
(Floresta)
410Late SilurianSilurian mystery
425Early Silurianhiatus
440Late Ordovician
Rich fauna in BoliviaSan Pedro
(450-490)
Duda
()
470Early OrdovicianFirst fossilsBusbanzá
(>470±22)
Chuscales
Otengá
Guape
()
Río Nevado
()
Hígado
()
Agua Blanca
Venado
(470-475)
[32][33][34]
488Late Cambrian
Regional intrusionsChicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[35][36]
515Early CambrianCambrian explosion[34][37]
542Ediacaran
Break-up of Rodiniapre-Quetamepost-ParguazaEl Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement[38][39]
600NeoproterozoicCariri Velhos orogenyBucaramanga
(600-1400)
pre-Guaviare[35]
800
Snowball Earth[40]
1000Mesoproterozoic
Sunsás orogenyAriarí
(1000)
La Urraca
(1030-1100)
[41][42][43][44]
1300Rondônia-Juruá orogenypre-AriaríParguaza
(1300-1400)
Garzón
(1180-1550)
[45]
1400
pre-Bucaramanga[46]
1600PaleoproterozoicMaimachi
(1500-1700)
pre-Garzón[47]
1800
Tapajós orogenyMitú
(1800)
[45][47]
1950Transamazonic orogenypre-Mitú[45]
2200Columbia
2530Archean
Carajas-Imataca orogeny[45]
3100Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]

See also

Notes

  1. based on Duarte et al. (2019)[48], García González et al. (2009),[49] and geological report of Villavicencio[50]
  2. based on Duarte et al. (2019)[48] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[51]

References

  1. 1 2 Velandia et al., 2001, p.53
  2. Velandia et al., 2001, p.34
  3. Velandia et al., 2001, p.54
  4. Villamil, 2012, p.166
  5. ANH, 2007, p.84
  6. García González et al., 2009, p.83
  7. ANH, 2007, p.57
  8. García González et al., 2009, p.16
  9. Badouin et al., 2016, p.87
  10. Monje et al., 2016, p.38
  11. Los Mangos at Fossilworks.org
  12. 1 2 3 4 5 6 García González et al., 2009, p.27
  13. 1 2 3 4 5 6 García González et al., 2009, p.50
  14. 1 2 García González et al., 2009, p.85
  15. 1 2 3 4 5 6 7 8 9 10 Barrero et al., 2007, p.60
  16. 1 2 3 4 5 6 7 8 Barrero et al., 2007, p.58
  17. Plancha 111, 2001, p.29
  18. 1 2 Plancha 177, 2015, p.39
  19. 1 2 Plancha 111, 2001, p.26
  20. Plancha 111, 2001, p.24
  21. Plancha 111, 2001, p.23
  22. 1 2 Pulido & Gómez, 2001, p.32
  23. Pulido & Gómez, 2001, p.30
  24. 1 2 Pulido & Gómez, 2001, pp.21-26
  25. Pulido & Gómez, 2001, p.28
  26. Correa Martínez et al., 2019, p.49
  27. Plancha 303, 2002, p.27
  28. Terraza et al., 2008, p.22
  29. Plancha 229, 2015, pp.46-55
  30. Plancha 303, 2002, p.26
  31. Moreno Sánchez et al., 2009, p.53
  32. Mantilla Figueroa et al., 2015, p.43
  33. Manosalva Sánchez et al., 2017, p.84
  34. 1 2 Plancha 303, 2002, p.24
  35. 1 2 Mantilla Figueroa et al., 2015, p.42
  36. Arango Mejía et al., 2012, p.25
  37. Plancha 350, 2011, p.49
  38. Pulido & Gómez, 2001, pp.17-21
  39. Plancha 111, 2001, p.13
  40. Plancha 303, 2002, p.23
  41. Plancha 348, 2015, p.38
  42. Planchas 367-414, 2003, p.35
  43. Toro Toro et al., 2014, p.22
  44. Plancha 303, 2002, p.21
  45. 1 2 3 4 Bonilla et al., 2016, p.19
  46. Gómez Tapias et al., 2015, p.209
  47. 1 2 Bonilla et al., 2016, p.22
  48. 1 2 Duarte et al., 2019
  49. García González et al., 2009
  50. Pulido & Gómez, 2001
  51. García González et al., 2009, p.60

Bibliography

  • Badouin, Cyril; Gérard Delanoy; Josep Antón Moreno Bedmar; Antoine Pictet; Jean Vermeulen; Gabriel Conte; Roland Gonnet; Patrick Boselli, and Marc Bonelli. 2016. Revision of the Early Cretaceous genera Heminautilus SPATH, 1927, and Josanautilus MARTÍNEZ & GRAUGES, 2006 (Nautilida, Cenoceratidae). Carnets Geologicás 16. 61–212. Accessed 2017-01-20.
  • Barrero, Dario; Andrés Pardo; Carlos A. Vargas, and Juan F. Martínez. 2007. Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal, 1–92. ANH.
  • García González, Mario; Ricardo Mier Umaña; Luis Enrique Cruz Guevara, and Mauricio Vásquez. 2009. Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, 1–219. Universidad Industrial de Santander.
  • Monje Durán, Camila; Camila Martínez; Ignacio Escapa, and Santiago Madriñán. 2016. Nuevos registros de helechos y coníferas del Cretácico Inferior en la cuenca del Valle Superior del Magdalena, Colombia. Boletín de Geología, Universidad Industrial de Santander 38. 29–42. Accessed 2017-03-31.
  • Núñez Tello, Alberto. 2003. Cartografía geológica de las zonas Andina Sur y Garzón-Quetame (Colombia) - Memoria explicativa de las planchas 411 La Cruz, 412 San Juan de Villalobos, 430 Mocoa, 431 Piamonte, 448 Monopamba, 449 Orito y 465 Churuyaco, 1–298. INGEOMINAS.
  • Velandia P., Francisco; Alberto Núñez T., and Germán Marquínez. 2001. Mapa Geológico del Departamento del Huila - 1:300,000 - Memoria explicativa, 1–152. INGEOMINAS.
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).

Maps

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.