$x^{123}x^{123}x^{123}x^{123}x^{123}x^{123}x_{123}x_{123}x^{2}\infty\bigcup_{\alpha\in S}\lfloor x \rfloor\frac{x}{y}\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]\left( \right)\left \{ {{y=2} \atop {x=2}} \right.\int\limits^a_b {x} \, dx\left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right]\lim_{n \to \infty} a_n\lfloor x \rfloor\lim_{n \to \infty} a_n\lim_{n \to \infty} a_n\neq\sqrt[n]{x}\lim_{n \to \infty} a_n\neq\lfloor x \rfloor\sqrt{x}\sqrt[n]{x}\sqrt{x}$