Wykres funkcji gamma
Czy istnieją inne funkcje niż funkcja gamma, które interpolują funkcję silnia dla dowolnych liczb rzeczywistych?

Funkcja gamma (zwana też funkcją gamma Eulera) – funkcja specjalna, która rozszerza pojęcie silni[1] na zbiór liczb rzeczywistych i zespolonych.

Definicje

Całkowa

Jeżeli – część rzeczywista liczby zespolonej jest dodatnia, to

– tzw. całka Eulera 2 rodzaju (całka Eulera 1 rodzaju – to funkcja Beta)

Iloczynowa

Dla dowolnych liczb zespolonych mamy

Motywacja

Funkcja gamma może być postrzegana jako rozwiązanie następującego problemu interpolacji:

„Znajdź gładką krzywą, która łączy punkty dane przez funkcję która jest określona dla dodatnich liczb całkowitych ”.

Wzór nie może być użyty dla niecałkowitych wartości ponieważ jest ważny tylko wtedy, gdy jest liczbą naturalną.

Funkcja gamma jest dobrym rozwiązaniem, jednak nie jest to jedyne rozwiązanie: istnieje bowiem nieskończenie wiele ciągłych rozszerzeń funkcji silnia na liczby niecałkowite, gdyż przez zbiór izolowanych punktów (jaki tworzy wykres funkcji silnia) można narysować nieskończenie wiele różnych krzywych.

Funkcja gamma jest najbardziej użytecznym rozwiązaniem w praktyce, ponieważ jest funkcją analityczną (z wyjątkiem niedodatnich liczb całkowitych) i można ją zdefiniować na kilka równoważnych sposobów.

Nie jest to także jedyna funkcja analityczna, która rozszerza silnię, ponieważ dodanie do niej dowolnej funkcji analitycznej, która zeruje się dla dodatnich liczb całkowitych, takich jak gdzie – liczba całkowita, da inną funkcję interpolującą silnię. Takie funkcje nazywa się funkcjami pseudogamma. Najbardziej znaną jest funkcja Hadamarda.

Własności funkcji Gamma

Dwa dobre uogólnienia analityczne funkcji silnia na zbiór liczb rzeczywistych: funkcja – wykres niebieski oraz funkcja – wykres zielony. Obie te funkcje przecinają się dla liczb naturalnych.

Tw. Funkcja gamma nie ma miejsc zerowych (por. wykres)

Tw.

Tw. ,

gdzie – zbiór liczb naturalnych,

tzn. funkcja gamma ma wartości identyczne jak silnia dla liczb naturalnych.

Tw. Dla mamy

gdzie oznacza tzw. silnię wielokrotną p-tą.

Tw.

Dowód – metodą całkowania przez części.

Tw.

Tw. Jeżeli mianownik jest niezerowy, to:

Tw. Jeśli to:

Tw. Jeśli to:

Tw. Wzór iloczynowy Gaussa:

Wybrane wartości funkcji Gamma

Tabela wartości funkcji gamma
−2,500
−2
−1,500
−1
−0,500
0
0,143
0,167
0,200
0,250
0,333
0,500
10! = 1
1,500
21! = 1
2,500
32! = 2
3,500
43! = 6

Dla funkcja ma minimum lokalne.

Funkcja nie jest określona dla – ma tam bieguny o residuum

Wykres funkcji zespolonej – techniki wizualizacji

Wykres funkcji rzeczywistej można narysować w 2 wymiarach. Wykres funkcji zespolonej, mającej zarówno zespoloną dziedzinę, jak i zespolony zbiór wartości, wymagałby 4 wymiarów. Jednym ze sposobów rozwiązania tego problemu jest metoda wizualizacji za pomocą powierzchni Riemanna; inną metodą jest technika kolorowanie dziedziny.

Wykres funkcji zespolonej x – części rzeczywiste liczb zespolonych postaci y – części urojone tych liczb, z tj. moduł funkcji gamma; kolor – zależy od tj. od wartości argumentu funkcji gamma.
Kompletny wykres
Moduł
Argument
Część rzeczywista
Część urojona
Wykres funkcji zespolonej uzyskany techniką kolorowania dziedziny

Odwrotność funkcji gamma

gdzie γ to stała Eulera-Mascheroniego.

Odwrotność funkcji gamma jest określona na całej płaszczyźnie zespolonej, gdyż funkcja nie ma miejsc zerowych – taką funkcję nazywa się funkcją całkowitą.

Logarytmiczna pochodna funkcji gamma

Wykres logarytmicznej pochodnej funkcji gamma

Df. Logarytmiczną pochodną funkcji gamma albo funkcją di-gamma nazywa się funkcję postaci

gdzie

Tw.

gdzie stała Eulera-Mascheroniego

Tw.

Tw. Dla słuszne jest przybliżenie:

Funkcja poligamma

Df. Funkcją poligamma n-tego rzędu nazywamy -szą pochodną funkcji tj.

Wtedy:

Df. Funkcją tri-gamma (lub trój-gamma) nazywa się funkcją

Funkcja i kilka pierwszych funkcji poligamma na płaszczyźnie zespolonej
(digamma)
(trigamma)
Wykresy funkcji zespolonej uzyskane techniką kolorowania dziedziny

Zastosowania funkcji gamma

Funkcja gamma ma ogromnie liczne zastosowania (sekcja wymaga rozwinięcia)

  • Na funkcji gamma opiera się symbol Pochhammera[2].
  • Wzór na objętość n-wymiarowej hipersfery: [3].

Zobacz też

Przypisy

  1. Funkcje Eulera, [w:] Encyklopedia PWN [dostęp 2021-07-21].
  2. Eric W. Weisstein, Pochhammer Symbol, [w:] MathWorld, Wolfram Research [dostęp 2018-01-21] (ang.).
  3. Eric W. Weisstein, Hypersphere, [w:] MathWorld, Wolfram Research [dostęp 2018-01-21] (ang.).

Bibliografia

  • I. N. Bronsztejn, K. A. Siemiendiajew, Poradnik encyklopedyczny. Matematyka, Wydawnictwo Naukowe PWN, Warszawa 2010, s. 192–193.

Linki zewnętrzne

Kalkulator online:

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.