Wykres funkcji Si(x) i Ci(x) w zakresie [0, 8π]

Sinus całkowyfunkcja określona wzorem:

lub podobna funkcja, różniąca się o stałą:

Cosinus całkowy – funkcja określona wzorem:

lub

gdzie to stała Eulera.

Całki określające te funkcje są całkami przestępnymi – nie dają się wyrazić za pomocą funkcji elementarnych. Są zaliczane do funkcji specjalnych[1].

Zobacz też

Przypisy

  1. funkcje specjalne, [w:] Encyklopedia PWN [dostęp 2023-05-31].

Linki zewnętrzne

  • Eric W. Weisstein, Sine Integral, [w:] MathWorld, Wolfram Research (ang.). [dostęp 2023-05-31].
  • Eric W. Weisstein, Cosine Integral, [w:] MathWorld, Wolfram Research (ang.). [dostęp 2023-05-31].
  • publikacja w otwartym dostępie – możesz ją przeczytać Integral sine (ang.), Encyclopedia of Mathematics, encyclopediaofmath.org, [dostęp 2023-05-31].
  • publikacja w otwartym dostępie – możesz ją przeczytać Integral cosine (ang.), Encyclopedia of Mathematics, encyclopediaofmath.org, [dostęp 2023-05-31].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.