Wykres funkcji uzyskany sposobem pierwszym

Technika kolorowania dziedziny – sposób prezentacji wykresu funkcji zmiennej zespolonej. Polega on na przypisaniu kolorów z koła barw do płaszczyzny zespolonej. Możliwe są różne przekształcenia lecz w praktyce stosuje się dwa:

  1. Środek płaszczyzny zespolonej jest biały, liczba 1 jest czerwona, liczba −1 jest błękitno turkusowa a punkt w nieskończoności jest czarny.
  2. Środek płaszczyzny zespolonej jest czarny, liczba 1 jest błękitno turkusowa, liczba −1 jest czerwona a punkt w nieskończoności jest biały.

W obu przypadkach najbardziej nasycone kolory znajdują się na okręgu jednostkowym. Bardziej precyzyjnie, argument liczby zespolonej utożsamia się z odcieniem H natomiast moduł z jasnością L w przestrzeni kolorów HSL. Dla tak uzyskanej pary (H, L) ostatni trzeci parametr S (nasycenie) ustawia się na wartość maksymalną.

Kompletny wykres
Moduł
Argument
Część rzeczywista
Część urojona
Wykres funkcji zespolonej odwzorowany techniką kolorowania dziedziny sposobem drugim

Linki zewnętrzne

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.