Definicja podstawowa

Jednostronną transformatą Laplace’a funkcji nazywamy następującą funkcję

często zapisywaną, zwłaszcza w środowisku inżynierskim, w następującej formie:

Niech X oznacza przestrzeń funkcji, dla których powyższa całka (zwana całką Laplace’a) jest zbieżna. Wtedy funkcję nazywamy transformacją Laplace’a.

Należy zwrócić uwagę na rozróżnienie pomiędzy pojęciem transformaty a transformacji Laplace’a. Zgodnie z powyższą definicją transformacja Laplace’a jest przekształceniem zbioru funkcji, dla których całka Laplace’a jest zbieżna w zbiór funkcji zespolonych zmiennej zespolonej. Natomiast transformata Laplace’a jest jedynie obrazem pewnej funkcji w wyniku przekształcenia jej przez transformację Laplace’a.

Matematykiem, który zdefiniował transformację Laplace’a i od którego nazwiska wzięła ona nazwę był Pierre Simon de Laplace.

Warunki zbieżności całki z transformatą Laplace’a

Warunkiem dostatecznym jest istnienie funkcji, która majoryzuje, czyli ogranicza wykładniczo funkcję istnieje takie oraz i że zachodzi nierówność:

dla

Interpretacja oraz związek z transformatą Fouriera i transformatą Z

Wykresy funkcji poddanych przekształceniu Laplace’a przedstawia się na płaszczyźnie zespolonej (tzw. płaszczyźnie S).

Funkcja rzeczywista czasu może być przetransformowana na płaszczyznę S poprzez scałkowanie iloczynu takiej funkcji z wyrażeniem w granicach od do gdzie jest liczbą zespoloną

Jeden ze sposobów na zrozumienie, co otrzymuje się w wyniku takiego działania, polega na zwróceniu się ku analizie Fouriera. W analizie Fouriera krzywe harmoniczne sinus i cosinus (z wzoru Eulera mamy bowiem zob. też szereg Fouriera) mnożone są przez sygnał i wynikowe całkowanie dostarcza wskazówki na temat sygnału obecnego dla danej częstotliwości (na przykład energii sygnału dla danego punktu w dziedzinie częstotliwości, zob. też widmo sygnału).

Transformacja S (powszechnie określana mianem transformacji Laplace’a) wykonuje podobne działanie, ale o bardziej ogólnym charakterze. Wyrażenie ujmuje nie tylko częstotliwości, ale również rzeczywiste efekty Transformacja S uwzględnia więc nie tylko przebiegi częstotliwościowe, ale także efekty o charakterze zaniku. Na przykład krzywa sinusoidalna tłumiona może być odpowiednio zamodelowana za pomocą transformacji S. Transformacja Laplace’a stanowi więc uogólnienie transformacji Fouriera. Ściślej przekształcenie Fouriera stanowi szczególny przypadek przekształcenia Laplace’a dla Podobnie transformata Z stanowi uogólnienie dyskretnej transformaty Fouriera.

Powiązanie transformaty Laplace’a z transformatą Z zob. metoda Tustina.

Własności

Liniowość

Transformata pochodnej

gdzie oznacza granicę prawostronną funkcji w punkcie

Pochodna transformaty

Transformata całki

Całka transformaty

Przesunięcie w dziedzinie transformaty

Transformata funkcji z przesunięciem

gdzie oznacza skok jednostkowy.

Splot jednostronny

Jest to tzw. twierdzenie Borela o splocie.

Transformata funkcji okresowej o okresie T

Własności graniczne

Transformaty Laplace’a częściej spotykanych funkcji

gdzie stała Eulera.

Transformata odwrotna Laplace’a

Transformatą odwrotną funkcji nazywamy taką funkcję której transformatą jest

jeżeli

Zastosowanie

Transformata Laplace’a posiada kilka własności, które czynią ją szczególnie użyteczną w analizie liniowych układów dynamicznych. W inżynierii i fizyce jako narzędzie analizy graficznej wykorzystywana jest płaszczyzna S. Na płaszczyźnie S, mnożenie przez daje efekt różniczkowania (zob. człon różniczkujący), dzielenie przez daje efekt całkowania (zob. człon całkujący). Analiza pierwiastków zespolonych równania na płaszczyźnie S i przedstawienie ich na wykresie Arganda, może ujawnić informacje na temat charakterystyk częstotliwościowych i na temat stabilności układu (przebieg rzeczywistej funkcji czasu).

Kodowanie oznaczenia

W Unikodzie symbol transformaty Laplace’a ma postać:

ZnakUnicodeKod HTMLNazwa unikodowaNazwa polska
U+2112ℒ lub ℒ SCRIPT CAPITAL Lpisana wielka litera L

W LaTeX-u używa się znacznika:

ZnakLaTeX
\mathcal L

Zobacz też

Bibliografia

Linki zewnętrzne

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.