Macierz odwrotnaelement odwrotny w pierścieniu macierzy kwadratowych. Uogólnieniem pojęcia macierzy odwrotnej jest tzw. uogólniona macierz odwrotna.

Definicja

Niech będzie macierzą kwadratową ustalonego stopnia. Macierz jest odwracalna, jeśli istnieje taka macierz że zachodzi

gdzie jest macierzą jednostkową. Macierz nazywa się wówczas macierzą odwrotną do macierzy i oznacza się przez

Jeżeli taka macierz nie istnieje, to macierz nazywamy nieodwracalną.

Macierze kwadratowe ustalonego stopnia tworzą pierścień (łączny, nieprzemienny z jedynką), powyższe definicje określają więc element odwracalny oraz odwrotny do danego w tym pierścieniu. Należy pamiętać, że jeżeli w pierścieniu łącznym element odwrotny do danego istnieje, to jest wyznaczony jednoznacznie.

Pełna grupa liniowa

Dla danego pierścienia zbiór wszystkich macierzy odwracalnych stopnia jest grupą ze względu na mnożenie macierzy. Grupę tę nazywa się pełną (ogólną) grupą liniową stopnia nad i oznacza

Odwracalność a nieosobliwość

Definicja wyznacznika macierzy kwadratowej ma sens, o ile pierścień nad którym zbudowana jest macierz, jest przemienny. Macierzą nieosobliwą bądź niezdegenerowaną nazywa się każdą macierz o odwracalnym wyznaczniku (jeżeli jest ciałem, to jest to równoważne temu, że jest on różny od zera). Macierzą osobliwą albo zdegenerowaną nazywa się macierz o wyznaczniku nieodwracalnym (zerowym) – są one dzielnikami zera w pierścieniu macierzy ustalonego stopnia.

Z własności macierzy dołączonej wynika, że macierz kwadratowa nad pierścieniem przemiennym jest odwracalna wtedy i tylko wtedy, gdy jest ona nieosobliwa. Tak więc nieosobliwość macierzy staje się kryterium odwracalności macierzy.

Jeżeli pierścień nie jest przemienny, to określenie wyznacznika staje się niemożliwe i nie istnieje prosta metoda rachunkowa pozwalająca stwierdzić odwracalność macierzy. Wyjątek stanowią algebry centralne proste i określany w nich wyznacznik Dieudonné (o wartościach w abelianizacji czyli grupie ).

Własności

  • Macierz odwrotna do macierzy odwracalnej jest odwracalna, operacja odwracania macierzy jest inwolucją:
  • Iloczyn macierzy odwracalnych jest macierzą odwracalną,
    (kolejność macierzy jest istotna, gdyż mnożenie macierzy nie jest przemienne!).
  • Jeżeli macierz jest odwracalna, to także jest odwracalna,

Uwagi

  • Macierz jednostkowa jest odwracalna oraz (wynika wprost z definicji).
  • Macierz zerowa jest nieodwracalna, ogólnie – każda macierz osobliwa jest nieodwracalna.
  • Suma macierzy odwracalnych nie musi być macierzą odwracalną, niech będzie odwracalna, wówczas
  • Dla nieosobliwej macierzy zachodzi równość

Przykłady

Macierz

ma wyznacznik równy którego odwrotność w pierścieniu również wynosi Zatem macierz ma macierz odwrotną w

Rzeczywiście,

a więc

Macierz

gdzie jest pierścieniem reszt modulo 8

ma wyznacznik równy 3, który w pierścieniu jest odwracalny (jego odwrotność też wynosi ).

Macierz jest więc odwracalna, a macierzą odwrotną do niej jest

Wyznaczanie

Metoda dopełnień algebraicznych

Macierz odwrotną do nieosobliwej macierzy obliczamy następująco:

gdzie jest macierzą dołączoną do macierzy (czyli transponowaną macierzą dopełnień algebraicznych).

Metoda ta zakłada równoważność nieosobliwości i odwracalności.

Metoda eliminacji Gaussa-Jordana

Metoda eliminacji Gaussa-Jordana jest jedną z metod wyznaczania macierzy odwrotnej metodami bezwyznacznikowymi.

Niech zaś Przez rozumieć będziemy macierz klatkową, której pierwsze kolumn jest kolumnami macierzy a następne kolumn jest kolumnami macierzy (kreska między nimi służy oddzieleniu tych podmacierzy od siebie).

Aby znaleźć macierz odwrotną do należy rozwiązać układ równań względem macierzy która jest szukaną macierzą odwrotną. Należy więc do obu podmacierzy macierzy domnożyć macierz (z definicji wynika, że nie ma różnicy czy prawo-, czy lewostronnie) otrzymując w ten sposób macierz (lub ). Ponieważ to ostatecznie możemy interpretować tę operację jako

Operacja mnożenie macierzy nie jest prosta i dodatkowo nie znamy wartości macierzy wystarczy jednak w sposób zachowujący rozwiązania tego układu równań przekształcić macierz w macierz Sprowadza się to ostatecznie do przekształcenia podmacierzy w podmacierz jednostkową za pomocą neutralnych dla rozwiązań takiego układu operacji elementarnych na wierszach, działając przy tym na całej macierzy połączonej. Najszybszym zaś algorytmem wykorzystującym te operacje jest właśnie metoda eliminacji Gaussa-Jordana.

Przypadki szczególne

  • Macierz odwrotna do macierzy diagonalnej powstaje poprzez odwrócenie współczynników głównej przekątnej:
  • Macierz odwrotna do macierzy ortogonalnej jest równa jej transpozycji (przestawieniu):
  • Macierz odwrotna do macierzy wymiaru może być szybko wyznaczona według wzoru

Zobacz też

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.