Element odwracalny – dla danego (wewnętrznego) działania dwuargumentowego określonego w pewnej strukturze algebraicznej element, dla którego istnieje element do niego odwrotny względem tego działania.

Innymi słowy, jeżeli zbiór wyposażony jest w działanie to element jest odwracalny, jeśli istnieje taki element dla którego spełnione są równości

oraz

gdzie jest elementem neutralnym działania

Jeżeli spełniony jest tylko pierwszy warunek, to element nazywa się prawostronnie odwracalnym, jeżeli wyłącznie drugi, to nazywa się go lewostronnie odwracalnym. Łączność działania gwarantuje, że elementy odwracalne jednostronnie są odwracalne obustronnie, z kolei przemienność tego działania sprawia, że elementy tak lewo-, jak i prawostronnie odwracalne są odwracalne obustronnie.

Teoria pierścieni

W teorii pierścieni elementy odwrotne względem dodawania nazywane są elementami przeciwnymi. Ponieważ elementy pierścienia z działaniem dodawania tworzą grupę, to dla każdego elementu pierścienia istnieje element do niego przeciwny, zatem każdy z nich jest odwracalny względem tego dodawania. Zwyczajowo nazwę element odwrotny rezerwuje się dla elementu odwrotnego względem mnożenia. Ponieważ nie każdy element ma element do niego odwrotny względem mnożenia, to uzasadnione jest wyróżnianie tych elementów, które mają swoje odwrotności – właśnie one nazywane są elementami odwracalnymi lub dla odróżnienia od ogólnie pojętych elementów odwracalnych jednościami (nie należy mylić z jedynką, która w danym pierścieniu z jedynką jest jedna).

Dla danego pierścienia z jedynką element nazywa się odwracalnym lub jednością, jeśli jest dzielnikiem jedynki:

Grupa elementów odwracalnych

Zbiór elementów odwracalnych danego pierścienia oznacza się symbolem lub Ponieważ zbiór ten zawiera jedynkę (elementem do niej odwrotnym jest ona sama) oraz dla jest to jest grupą.

Pierścień (z jedynką) jest pierścieniem z dzieleniem wtedy i tylko wtedy, gdy

Stowarzyszenie

W pierścieniu przemiennym z jedynką grupa elementów odwracalnych działa na zbiorze za pomocą mnożenia. Orbity tego działania nazywane są klasami elementów stowarzyszonych. Oznacza to, że istnieje określona na relacja równoważności nazywana stowarzyszeniem, taka że

Innymi słowy elementy stowarzyszone „różnią się” o czynnik odwracalny.

W dziedzinie całkowitości moc klas elementów stowarzyszonych, wyłączając jest równa mocy zbioru

Przykłady

Zobacz też: arytmetyka modularna, gdzie bada się pierścienie i ciała

W poniższych przykładach wszystkie elementy wspomnianych pierścieni mają elementy przeciwne, czyli są one odwracalne względem dodawania. Omawiane są w nich elementy odwracalne względem działania multiplikatywnego.

  • Pierścień liczb całkowitych ma dokładnie dwa elementy odwracalne (jedności): oraz
  • W pierścieniu liczb całkowitych Gaussa są nimi wyłącznie oraz
  • W pierścieniu gdzie istnieją elementy tak odwracalne (względnie pierwsze z ), jak i nieodwracalne (w przeciwnym przypadku), ich liczba dana jest za pomocą funkcji φ Eulera, np. w odwracalne są elementy i pozostałe, czyli oraz są nieodwracalne.
  • W pierścieniu wielomianów o współczynnikach wymiernych jedynymi elementami odwracalnymi są wielomiany stopnia 0 (różne od zera wielomiany stałe).
  • W dowolnym ciele każdy niezerowy element jest odwracalny. Jest to warunek konieczny, by pierścień był ciałem. Jeśli pierścień jest nietrywialny to jest to warunek konieczny i wystarczający.
    • Dla liczb rzeczywistych
    • Dla gdzie jest liczbą pierwszą, przykładowo
  • W zbiorze macierzy kwadratowych ustalonego stopnia z mnożeniem Cauchy’ego elementami odwracalnymi (macierzami odwracalnymi) są wszystkie macierze nieosobliwe.

Zobacz też

Linki zewnętrzne

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.