Solar eclipse of May 9, 1929 | |
---|---|
Map | |
Type of eclipse | |
Nature | Total |
Gamma | −0.2887 |
Magnitude | 1.0562 |
Maximum eclipse | |
Duration | 307 sec (5 m 7 s) |
Coordinates | 1°36′N 92°42′E / 1.6°N 92.7°E |
Max. width of band | 193 km (120 mi) |
Times (UTC) | |
Greatest eclipse | 6:10:34 |
References | |
Saros | 127 (53 of 82) |
Catalog # (SE5000) | 9349 |
A total solar eclipse occurred on May 9, 1929. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Dutch East Indies (today's Indonesia), Federated Malay States (now belonging to Malaysia), Siam (name changed to Thailand later), French Indochina (the part now belonging to Vietnam), Spratly Islands, Philippines, and South Seas Mandate in Japan (the part now belonging to FS Micronesia).
Related eclipses
Solar eclipses 1928–1931
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
Solar eclipse series sets from 1928–1931 | ||||
---|---|---|---|---|
Ascending node | Descending node | |||
117 | May 19, 1928 Total (non-central) |
122 | November 12, 1928 Partial | |
127 | May 9, 1929 Total |
132 | November 1, 1929 Annular | |
137 | April 28, 1930 Hybrid |
142 | October 21, 1930 Total | |
147 | April 18, 1931 Partial |
152 | October 11, 1931 Partial |
Saros 127
It is a part of Saros cycle 127, repeating every 18 years, 11 days, containing 82 events. The series started with partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular eclipses in this series. The series ends at member 82 as a partial eclipse on March 21, 2452. The longest duration of totality was 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occurs at the Moon’s ascending node.[2]
Series members 52–68 occur between 1901 and 2200 | ||
---|---|---|
52 | 53 | 54 |
April 28, 1911 |
May 9, 1929 |
May 20, 1947 |
55 | 56 | 57 |
May 30, 1965 |
June 11, 1983 |
June 21, 2001 |
58 | 59 | 60 |
July 2, 2019 |
July 13, 2037 |
July 24, 2055 |
61 | 62 | 63 |
August 3, 2073 |
August 15, 2091 |
August 26, 2109 (Partial) |
64 | 65 | 66 |
September 6, 2127 (Partial | September 16, 2145 (Partial) | September 28, 2163 (Partial) |
67 | 68 | |
October 8, 2181 (Partial) | October 19, 2199 (Partial) |
Metonic series
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).
22 eclipse events between December 13, 1898 and July 20, 1982 | ||||
---|---|---|---|---|
December 13–14 | October 1–2 | July 20–21 | May 9 | February 24–25 |
111 | 113 | 115 | 117 | 119 |
December 13, 1898 |
July 21, 1906 |
May 9, 1910 |
February 25, 1914 | |
121 | 123 | 125 | 127 | 129 |
December 14, 1917 |
October 1, 1921 |
July 20, 1925 |
May 9, 1929 |
February 24, 1933 |
131 | 133 | 135 | 137 | 139 |
December 13, 1936 |
October 1, 1940 |
July 20, 1944 |
May 9, 1948 |
February 25, 1952 |
141 | 143 | 145 | 147 | 149 |
December 14, 1955 |
October 2, 1959 |
July 20, 1963 |
May 9, 1967 |
February 25, 1971 |
151 | 153 | 155 | ||
December 13, 1974 |
October 2, 1978 |
July 20, 1982 |
References
- ↑ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ↑ "Solar Saros series 127". NASA Goddard Space Flight Center. NASA. Retrieved 2 November 2017.