Solar eclipse of August 12, 2045
Map
Type of eclipse
NatureTotal
Gamma0.2116
Magnitude1.0774
Maximum eclipse
Duration366 sec (6 m 6 s)
Coordinates25°54′N 78°30′W / 25.9°N 78.5°W / 25.9; -78.5
Max. width of band256 km (159 mi)
Times (UTC)
Greatest eclipse17:42:39
References
Saros136 (39 of 71)
Catalog # (SE5000)9608

A total solar eclipse will occur on Saturday, August 12, 2045, when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

In this total solar eclipse, the path of totality similar to, but not exactly the same as the August 21, 2017 total solar eclipse because the lunar node is descending and the August 2017 solar eclipse was ascending.

It will be the fourth longest eclipse of the 21st century with a magnitude of 1.0774 occurring just one hour after perigee.[1] It will be visible throughout much of the continental United States, with a path of totality running through northern California, Nevada, Utah, Colorado, Kansas, Oklahoma, Arkansas, Mississippi, Alabama, and Florida. The total eclipse will be greatest over the Bahamas, before continuing over the Turks and Caicos Islands, Cuba, Dominican Republic, Haiti, Venezuela, Trinidad and Tobago, Guyana, Suriname, French Guiana, and Brazil.

The path of totality of this eclipse will be seen over many major cities, including Reno, Salt Lake City, Colorado Springs, Oklahoma City, Tulsa, Tampa, Orlando, Fort Lauderdale, Miami, Nassau, Santo Domingo, Belém, São Luís and Recife.[2] It will also be the second total eclipse visible from Little Rock in 21.3 years.[2] Totality will last for at least 6 minutes along the part of the path that starts at Camden, Alabama, crossing Florida and ending near the southernmost Bahama Islands. The longest duration of totality will be 6 minutes 5.5 seconds at 25°54.594′N 78°32.19′W / 25.909900°N 78.53650°W / 25.909900; -78.53650, which is over the Atlantic Ocean east of Fort Lauderdale and south of Freeport, Bahamas.[2]

The solar eclipse of August 21, 2017 had a very similar path of totality over the U.S., about 250 miles (400 km) to the northeast, also crossing the Pacific coast and Atlantic coast of the country. This is because when a solar eclipse crosses the U.S. in mid-August at an ascending node (i.e. moves from south to north during odd-numbered saros), the path of the eclipse tracks from coast to coast. When a solar eclipse crosses the U.S. in mid-August at descending node (even numbered saros), the path tracks a large distance southward.[3]

Images


Animated path: Small dark circle represents umbra, much larger grey circle represents penumbra.

Solar eclipses of 2044–2047

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

Solar eclipse series sets from 2044–2047
Ascending node   Descending node
121February 28, 2044

Annular
126August 23, 2044

Total
131February 16, 2045

Annular
136August 12, 2045

Total
141February 5, 2046

Annular
146August 2, 2046

Total
151January 26, 2047

Partial
156July 22, 2047

Partial
Partial solar eclipses on June 23, 2047 and December 16, 2047 occur on the next lunar year eclipse set.

Saros 136

Solar Saros 136, repeating every 18 years, 11 days, contains 71 events. The series started with partial solar eclipse on June 14, 1360, and reached a first annular eclipse on September 8, 1504. It was a hybrid event from November 22, 1612, through January 17, 1703, and total eclipses from January 27, 1721, through May 13, 2496. The series ends at member 71 as a partial eclipse on July 30, 2622, with the entire series lasting 1262 years. The longest eclipse occurred on June 20, 1955, with a maximum duration of totality at 7 minutes, 7.74 seconds. All eclipses in this series occurs at the Moon's descending node.[5]

Series members 29–43 occur between 1865 and 2117
29 30 31

Apr 25, 1865

May 6, 1883

May 18, 1901
32 33 34

May 29, 1919

Jun 8, 1937

Jun 20, 1955
35 36 37

Jun 30, 1973

Jul 11, 1991

Jul 22, 2009
38 39 40

Aug 2, 2027

Aug 12, 2045

Aug 24, 2063
41 42 43

Sep 3, 2081

Sep 14, 2099

Sep 26, 2117

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between June 1, 2011 and June 1, 2087
May 31 – June 1 March 19–20 January 5–6 October 24–25 August 12–13
118 120 122 124 126

June 1, 2011

March 20, 2015

January 6, 2019

October 25, 2022

August 12, 2026
128 130 132 134 136

June 1, 2030

March 20, 2034

January 5, 2038

October 25, 2041

August 12, 2045
138 140 142 144 146

May 31, 2049

March 20, 2053

January 5, 2057

October 24, 2060

August 12, 2064
148 150 152 154 156

May 31, 2068

March 19, 2072

January 6, 2076

October 24, 2079

August 13, 2083
158 160 162 164 166

June 1, 2087

October 24, 2098

See also

Notable total solar eclipse crossing the United States from 1900 to 2050:

Notable annular solar eclipse crossing the United States from 1900 to 2050:

References

  1. Walker, John. "Lunar Perigee and Apogee Calculator". www.fourmilab.ch.
  2. 1 2 3 "TOTAL SOLAR ECLIPSE OF 2045 AUG 12".
  3. Google Earth Gallery for Solar and Lunar Eclipses, Xavier M. Jubier, 2011
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. SEsaros136 at NASA.gov
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.