Cyclotruncated 7-simplex honeycomb
(No image)
TypeUniform honeycomb
FamilyCyclotruncated simplectic honeycomb
Schläfli symbolt0,1{3[8]}
Coxeter diagram
7-face types{36}
t0,1{36}
t1,2{36}
t2,3{36}
Vertex figureElongated 6-simplex antiprism
Symmetry×22, [[3[8]]]
Propertiesvertex-transitive

In seven-dimensional Euclidean geometry, the cyclotruncated 7-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 7-simplex, truncated 7-simplex, bitruncated 7-simplex, and tritruncated 7-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.

Structure

It can be constructed by eight sets of parallel hyperplanes that divide space. The hyperplane intersections generate cyclotruncated 6-simplex honeycomb divisions on each hyperplane.

This honeycomb is one of 29 unique uniform honeycombs[1] constructed by the Coxeter group, grouped by their extended symmetry of rings within the regular octagon diagram:

A7 honeycombs
Octagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
a1 [3[8]]

d2 <[3[8]]> ×21

1

p2 [[3[8]]] ×22

2

d4 <2[3[8]]> ×41

p4 [2[3[8]]] ×42

d8 [4[3[8]]] ×8
r16 [8[3[8]]] ×16 3

See also

Regular and uniform honeycombs in 7-space:

Notes

  1. Weisstein, Eric W. "Necklace". MathWorld., OEIS sequence A000029 30-1 cases, skipping one with zero marks

References

  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
    • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Uniform space-fillings)
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
Space Family / /
E2 Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
E4 Uniform 4-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 hδ6 qδ6
E6 Uniform 6-honeycomb {3[7]} δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb {3[8]} δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb {3[10]} δ10 hδ10 qδ10
E10 Uniform 10-honeycomb {3[11]} δ11 hδ11 qδ11
En-1 Uniform (n-1)-honeycomb {3[n]} δn hδn qδn 1k22k1k21
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.