Dywan Sierpińskiego po 6 krokach

Dywan Sierpińskiegofraktal otrzymany z kwadratu za pomocą podzielenia go na dziewięć (3×3) mniejszych kwadratów, usunięcia środkowego kwadratu i ponownego rekurencyjnego zastosowania tej samej procedury do każdego z pozostałych ośmiu kwadratów. Nazwa pochodzi od nazwiska Wacława Sierpińskiego[1].

Definicja formalna

Niech będzie kwadratem jednostkowym na płaszczyźnie kartezjańskiej czyli Dla danego mając zbiór będący sumą kwadratów o bokach długości i rozłącznych wnętrzach, definiujemy zbiór będący sumą kwadratów o bokach długości i rozłącznych wnętrzach następująco: każdy z kwadratów, których sumą jest zbiór dzielimy na 9 kwadratów o bokach długości i rozłącznych wnętrzach i usuwamy ze zbioru wnętrza środkowych kwadratów. Dywan Sierpińskiego D jest częścią wspólną ciągu zbiorów

Alternatywna definicja

Dywan Sierpińskiego jest domknięciem zbioru punktów takich że w rozwinięciu liczb i w trójkowym systemie liczbowym nigdzie nie występuje cyfra 1 na tym samym miejscu po przecinku.

Topologicznym dywanem Sierpińskiego nazywamy każdą przestrzeń topologiczną homeomorficzną z powyżej zdefiniowanym dywanem Sierpińskiego.

Własności dywanu Sierpińskiego

Dowód: W kolejnych krokach konstrukcji fraktala usuwamy z każdego z kwadratów składowych środkowy kwadrat o polu 9 razy od niego mniejszym, pozostaje zaś z niego 8 kwadratów o łącznym polu równym jego pola. Niech oznacza pole zbioru Mamy zatem:

skąd:

Zatem dla dostatecznie dużych jest dowolnie małe, co oznacza, że dywan Sierpińskiego zawarty jest w figurach o dowolnie małych polach powierzchni, musi zatem mieć zerowe pole powierzchni.
  • Dywan Sierpińskiego jest przestrzenią uniwersalną dla krzywych płaskich, tzn. każde jednowymiarowe continuum na płaszczyźnie jest homeomorficzne z podzbiorem dywanu Sierpińskiego.

Zobacz też

Przypisy

  1. Sierpińskiego dywan, [w:] Encyklopedia PWN [dostęp 2021-07-28].

Bibliografia

  • Roman Duda: Wprowadzenie do topologii, Część I, Topologia ogólna. Warszawa: Państwowe Wydawnictwo Naukowe, 1986, s. 247–248. ISBN 83-01-05714-9.
  • Ryszard Engelking, Karol Sieklucki: Geometria i topologia, Część II, Topologia. Warszawa: PWN, 1980, s. 131–132. ISBN 83-01-01371-0.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.