Symbol ∴ (łac. „ergo”[1][2]) stosowany jest w logice matematycznej i w dowodach matematycznych[3]. Zazwyczaj używa się go przy wnioskowaniu, bezpośrednio przed konkluzją, na przykład przy wniosku sylogizmu[4]. Czytany jest jako „stąd”[5][6], „zatem”[5] lub „w związku z tym”[7] (ang. „therefore”[6][8][9] lub ang. „consequently”[9]). Symbol ten jest rzadko spotykany w Europie kontynentalnej[10], jednak jest powszechnie używany w krajach anglosaskich[11] i anglojęzycznej literaturze naukowej. Kodem tego symbolu w Unicode jest U+2234[12].
Historia
Pierwszy raz symbol ten pojawił się w druku w 1659 roku, w książce Teutsche Algebra (pol. „Niemiecka algebra”[2]), której autorem jest Johann Rahn[3]. W swojej pracy Rahn starał się przełożyć algebraiczny dorobek Viète’a i Kartezjusza na język niemiecki. W tym celu stosował liczne skróty notacyjne. Zdefiniował ∴ jako symbol mający nieść znaczenie łacińskiego ergo, czyli „zatem”[1][2]. Zamiennie do niego używał również ∵, jednak później większość matematyków w tym znaczeniu używała wyłącznie pierwszego ze znaków[10].
Przykłady użycia
Użycie w:
- matematyce[15]:
Inne zastosowania
W tradycji masońskiej symbol ∴ stosuje się jako znak abrewiatury. Stawiany po wielkich literach, bez spacji, sygnalizuje, że litery te stanowią skrót i są inicjałami tytułu masońskiego lub określenia stosowanego w wolnomularstwie[16][17].
Przykłady
skrót | znaczenie |
---|---|
G∴M∴ | Wielki Mistrz |
G∴L∴ | Wielka Loża |
B∴ | Brat Wolnomularz |
WW∴CC∴BB∴ | Wielce Czcigodni Bracia Wolnomularze |
Na W∴
(lub Wsch∴) |
na Wschodzie Warszawy |
Alfabet Braille’a
Symbol ∴ występuje w standardzie Braille’a dla języka angielskiego (ang. „Unified English Braille”) w dwóch wersjach:
Podobnie wyglądające symbole
- ∵ (U+2235) również używany jest w logice matematycznej i czytany jest jako ponieważ lub od (ang. „because”)[7][10];
- używany jest w meteorologii i oznacza „umiarkowany deszcz”[20][21][22];
- używany jest w meteorologii i oznacza „umiarkowana mżawka”[21][22];
- ⁂ (U+2042) używany jest w meteorologii i oznacza „umiarkowany śnieg”[21][22];
- ஃ (U+0B83) w piśmie tamilskim jest znakiem spółgłoskowym o transliteracji ḵ[23][24];
- ⛬ (U+26EC) jest japońskim symbolem mapowym oznaczającym miejsce historyczne[25][26].
Przypisy
- 1 2 Fowler, H.W. (Henry Watson) , 1858-1933., A Dictionary of Modern English Usage. The Classic First Edition., Oxford University Press USA – OSO, 2015, s. 268, ISBN 978-0-19-157119-0, OCLC 1119640576 [dostęp 2023-03-12] .
- 1 2 3 Erik R , Mathematical Association of America – Math Origins: The Logical Ideas [online] [dostęp 2023-03-12] (ang.).
- 1 2 Isaiah Lankham , Bruno Nachtergaele , Anne Schilling , Some Common Mathematical Symbols and Abbreviations (with History) [online], 21 stycznia 2007, s. 1 [dostęp 2023-03-09] .
- ↑ Definition, [w:] Susanna S. Epp , Discrete mathematics with applications, wyd. 4th ed, Boston, MA: Brooks/Cole, 2011, s. 51, ISBN 978-0-495-39132-6, OCLC 496962601 [dostęp 2023-03-09] .
- 1 2 Andrzej Pietruszczak , Konspekt do wykładu z „Logiki I” [online], 24 listopada 2006, s. 2 (pol.).
- 1 2 KURS JĘZYKA HTML I CSS, Znaki specjalne, symbole matematyczne [online], 14 grudnia 2009 [dostęp 2023-03-09] (pol.).
- 1 2 Symbole logiczne – RT [online], www.rapidtables.org [dostęp 2023-03-11] (pol.).
- 1 2 Important Notation – MathNotation [online], s. 2 .
- 1 2 Note-taking Abbreviations Writing Centre Learning Guide [online], 2014 [dostęp 2023-03-10] (ang.).
- 1 2 3 3. Logika i teoria zbiorów a rozwój pojęcia funkcji, [w:] Izabela. Autor. Jóźwik , Symbolika matematyczna związana z pojęciem funkcji, 2016, s. 94, OCLC 1011292286 [dostęp 2023-03-09] (pol. • ang.).
- ↑ Florian Cajori , History of mathematical notations (two volume in one)., Cosimo Inc, 2011, ISBN 1-61640-571-6, OCLC 891157908 [dostęp 2023-03-09] (ang.).
- ↑ ∴ – Therefore: U+2234 there4 [online], symbl.cc [dostęp 2023-03-11] (ang.).
- ↑ Andrzej Pietruszczak , Konspekt do wykładu z „Logiki I” [online], 1 grudnia 2006, s. 6 (pol.).
- ↑ Marcin Sydow , Discrete Mathematics Rules of Inference and Mathematical Proofs [online], s. 16 [dostęp 2023-03-11] (ang.).
- ↑ Janet Heine Barnett , Origins of Boolean Algebra in the Logic of Classes: George Boole, John Venn and C. S. Peirce [online], 2013, s. 21 (ang.).
- ↑ Christina L. Voss , The Universal Language of Freemasonry. A Socio-Linguistic Study of an In-Group’s Means of Communication compared with Ritualistic Diction and Symbolism of „Profane” Fraternities, and a Survey of its General Applicability. [online], 2003 (ang.).
- ↑ Monika Rzeczycka , Tadeusz Cegielski , Polskie tradycje ezoteryczne 1890-1939. Masoneria., t. Tom III, Wydawnictwo Uniwersytetu Gdańskiego, 2019, s. 8 (pol.).
- ↑ Josie Howse , Unified English Braille Training Manual: Advanced Mathematics, North Rocks [N.S.W.]: North Rocks Press, 2019, s. 37, ISBN 978-0-949050-06-9 [dostęp 2023-03-12] (ang.).
- ↑ Unified English Braille Guidelines for Technical Material [online], 2014, s. 56 (ang.).
- ↑ National Oceanic and Atmospheric Administration , Station Model Information for Weather Observations [online], 2022 [dostęp 2023-03-11] (ang.).
- 1 2 3 NOAA’s National Weather Service-Aviation Weather Center Homepage , AWC – Aviation Weather Center [online], www.aviationweather.gov [dostęp 2023-03-11] (ang.).
- 1 2 3 weather symbols [online], profhorn.meteor.wisc.edu [dostęp 2023-03-11] (ang.).
- ↑ Artur Karp , Zasady latynizacji języka tamilskiego [online] (pol.).
- ↑ TŁUMACZENIA TAMILSKI [online], Kumiria [dostęp 2023-03-11] (pol.).
- ↑ Association of Radio Industries and Businesses (ARIB), Data Coding and Transmission Specification for Digital Broadcasting [online], 2008, s. 76 [dostęp 2023-03-12] (ang.).
- ↑ Japanese TV Symbols, Michel Suignard, 11 marca 2008, s. 5 [dostęp 2023-03-12] (ang.).
Bibliografia
- Stefan Hugtenburg , Delftse Foundations of Computation, 2nd Edition, Minneapolis, MN 2018, ISBN 978-94-6366-598-8, OCLC 1345677665 [dostęp 2023-03-04] (ang.).
- Johann Heinrich Rahn , Teutsche Algebra, 1659, OCLC 166125548 [dostęp 2023-03-12] [zarchiwizowane z adresu 2023-03-12] (niem.).