6-orthoplex

Truncated 6-orthoplex

Bitruncated 6-orthoplex

Tritruncated 6-cube

6-cube

Truncated 6-cube

Bitruncated 6-cube
Orthogonal projections in B6 Coxeter plane

In six-dimensional geometry, a truncated 6-orthoplex is a convex uniform 6-polytope, being a truncation of the regular 6-orthoplex.

There are 5 degrees of truncation for the 6-orthoplex. Vertices of the truncated 6-orthoplex are located as pairs on the edge of the 6-orthoplex. Vertices of the bitruncated 6-orthoplex are located on the triangular faces of the 6-orthoplex. Vertices of the tritruncated 6-orthoplex are located inside the tetrahedral cells of the 6-orthoplex.

Truncated 6-orthoplex

Truncated 6-orthoplex
Typeuniform 6-polytope
Schläfli symbolt{3,3,3,3,4}
Coxeter-Dynkin diagrams

5-faces76
4-faces576
Cells1200
Faces1120
Edges540
Vertices120
Vertex figure
( )v{3,4}
Coxeter groupsB6, [3,3,3,3,4]
D6, [33,1,1]
Propertiesconvex

Alternate names

  • Truncated hexacross
  • Truncated hexacontatetrapeton (Acronym: tag) (Jonathan Bowers)[1]

Construction

There are two Coxeter groups associated with the truncated hexacross, one with the C6 or [4,3,3,3,3] Coxeter group, and a lower symmetry with the D6 or [33,1,1] Coxeter group.

Coordinates

Cartesian coordinates for the vertices of a truncated 6-orthoplex, centered at the origin, are all 120 vertices are sign (4) and coordinate (30) permutations of

(±2,±1,0,0,0,0)

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Bitruncated 6-orthoplex

Bitruncated 6-orthoplex
Typeuniform 6-polytope
Schläfli symbol2t{3,3,3,3,4}
Coxeter-Dynkin diagrams

5-faces
4-faces
Cells
Faces
Edges
Vertices
Vertex figure
{ }v{3,4}
Coxeter groupsB6, [3,3,3,3,4]
D6, [33,1,1]
Propertiesconvex

Alternate names

  • Bitruncated hexacross
  • Bitruncated hexacontatetrapeton (Acronym: botag) (Jonathan Bowers)[2]

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

These polytopes are a part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

B6 polytopes

β6

t1β6

t2β6

t2γ6

t1γ6

γ6

t0,1β6

t0,2β6

t1,2β6

t0,3β6

t1,3β6

t2,3γ6

t0,4β6

t1,4γ6

t1,3γ6

t1,2γ6

t0,5γ6

t0,4γ6

t0,3γ6

t0,2γ6

t0,1γ6

t0,1,2β6

t0,1,3β6

t0,2,3β6

t1,2,3β6

t0,1,4β6

t0,2,4β6

t1,2,4β6

t0,3,4β6

t1,2,4γ6

t1,2,3γ6

t0,1,5β6

t0,2,5β6

t0,3,4γ6

t0,2,5γ6

t0,2,4γ6

t0,2,3γ6

t0,1,5γ6

t0,1,4γ6

t0,1,3γ6

t0,1,2γ6

t0,1,2,3β6

t0,1,2,4β6

t0,1,3,4β6

t0,2,3,4β6

t1,2,3,4γ6

t0,1,2,5β6

t0,1,3,5β6

t0,2,3,5γ6

t0,2,3,4γ6

t0,1,4,5γ6

t0,1,3,5γ6

t0,1,3,4γ6

t0,1,2,5γ6

t0,1,2,4γ6

t0,1,2,3γ6

t0,1,2,3,4β6

t0,1,2,3,5β6

t0,1,2,4,5β6

t0,1,2,4,5γ6

t0,1,2,3,5γ6

t0,1,2,3,4γ6

t0,1,2,3,4,5γ6

Notes

  1. Klitzing, (x3x3o3o3o4o - tag)
  2. Klitzing, (o3x3x3o3o4o - botag)

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". x3x3o3o3o4o - tag, o3x3x3o3o4o - botag
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.