This is a timeline of the theory of abelian varieties in algebraic geometry, including elliptic curves.

Early history

Seventeenth century

Eighteenth century

Nineteenth century

Twentieth century

Twenty-first century

Notes

  1. PDF
  2. Miscellaneous Diophantine Equations at MathPages
  3. Fagnano_Giulio biography
  4. E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (fourth edition 1937), p. 72.
  5. André Weil, Number Theory: An approach through history (1984), p. 1.
  6. Landen biography
  7. Chronology of the Life of Carl F. Gauss
  8. Semen Grigorʹevich Gindikin, Tales of Physicists and Mathematicians (1988 translation), p. 143.
  9. Dale Husemoller, Elliptic Curves.
  10. Richelot, Essai sur une méthode générale pour déterminer les valeurs des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes, C. R. Acad. Sci. Paris. 2 (1836), 622-627; De transformatione integralium Abelianorum primi ordinis commentatio, J. Reine Angew. Math. 16 (1837), 221-341.
  11. Gopel biography
  12. "Rosenhain biography". www.gap-system.org. Archived from the original on 2008-09-07.
  13. Theorie der Abel'schen Funktionen, J. Reine Angew. Math. 54 (1857), 115-180
  14. "Thomae biography". www.gap-system.org. Archived from the original on 2006-09-28.
  15. Some Contemporary Problems with Origins in the Jugendtraum, Robert Langlands
  16. Über die Reduction einer bestimmten Klasse Abel'scher Integrale Ranges auf elliptische Integrale, Acta Mathematica 4, 392–414 (1884).
  17. PDF, p. 168.
  18. Ruggiero Torelli, Sulle varietà di Jacobi, Rend. della R. Acc. Nazionale dei Lincei (5), 22, 1913, 98–103.
  19. Gaetano Scorza, Intorno alla teoria generale delle matrici di Riemann e ad alcune sue applicazioni, Rend. del Circolo Mat. di Palermo 41 (1916)
  20. Carl Ludwig Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades, Mathematische Annalen 116 (1939), 617–657
  21. Jean-Pierre Serre and John Tate, Good Reduction of Abelian Varieties, Annals of Mathematics, Second Series, Vol. 88, No. 3 (Nov., 1968), pp. 492–517.
  22. Daniel Huybrechts, Fourier–Mukai transforms in algebraic geometry (2006), Ch. 9.
  23. Jean-Marc Fontaine, Il n'y a pas de variété abélienne sur Z, Inventiones Mathematicae (1985) no. 3, 515–538.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.