In multilinear algebra, a tensor decomposition is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors.[1][2][3] Many tensor decompositions generalize some matrix decompositions.[4]
Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields.[1][5] The main tensor decompositions are:
- Tensor rank decomposition;[6]
- Higher-order singular value decomposition;[7]
- Tucker decomposition;
- matrix product states, and operators or tensor trains;
- Online Tensor Decompositions[8][9][10]
- hierarchical Tucker decomposition;[11]
- block term decomposition[12][13][11][14]
Notation
This section introduces basic notations and operations that are widely used in the field.
Symbols | Definition |
---|---|
scalar, vector, row, matrix, tensor | |
vectorizing either a matrix or a tensor | |
matrixized tensor | |
mode-m product |
Introduction
A multi-way graph with K perspectives is a collection of K matrices with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index the tensor.
References
- 1 2 Vasilescu, MAO; Terzopoulos, D. "Multilinear (tensor) image synthesis, analysis, and recognition [exploratory dsp]". IEEE Signal Processing Magazine. 24 (6): 118–123.
- ↑ Kolda, Tamara G.; Bader, Brett W. (2009-08-06). "Tensor Decompositions and Applications". SIAM Review. 51 (3): 455–500. Bibcode:2009SIAMR..51..455K. doi:10.1137/07070111X. ISSN 0036-1445. S2CID 16074195.
- ↑ Sidiropoulos, Nicholas D.; De Lathauwer, Lieven; Fu, Xiao; Huang, Kejun; Papalexakis, Evangelos E.; Faloutsos, Christos (2017-07-01). "Tensor Decomposition for Signal Processing and Machine Learning". IEEE Transactions on Signal Processing. 65 (13): 3551–3582. arXiv:1607.01668. Bibcode:2017ITSP...65.3551S. doi:10.1109/TSP.2017.2690524. ISSN 1053-587X. S2CID 16321768.
- ↑ Bernardi, A.; Brachat, J.; Comon, P.; Mourrain, B. (2013-05-01). "General tensor decomposition, moment matrices and applications". Journal of Symbolic Computation. 52: 51–71. arXiv:1105.1229. doi:10.1016/j.jsc.2012.05.012. ISSN 0747-7171. S2CID 14181289.
- ↑ Rabanser, Stephan; Shchur, Oleksandr; Günnemann, Stephan (2017). "Introduction to Tensor Decompositions and their Applications in Machine Learning". arXiv:1711.10781 [stat.ML].
- ↑ Papalexakis, Evangelos E. (2016-06-30). "Automatic Unsupervised Tensor Mining with Quality Assessment". Proceedings of the 2016 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics: 711–719. arXiv:1503.03355. doi:10.1137/1.9781611974348.80. ISBN 978-1-61197-434-8. S2CID 10147789.
- ↑ Vasilescu, M.A.O.; Terzopoulos, D. (2002). Multilinear Analysis of Image Ensembles: TensorFaces (PDF). Lecture Notes in Computer Science; (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark). Vol. 2350. Springer, Berlin, Heidelberg. doi:10.1007/3-540-47969-4_30. ISBN 978-3-540-43745-1.
- ↑ Gujral, Ekta; Pasricha, Ravdeep; Papalexakis, Evangelos E. (7 May 2018). Ester, Martin; Pedreschi, Dino (eds.). "SamBaTen: Sampling-based Batch Incremental Tensor Decomposition". Proceedings of the 2018 SIAM International Conference on Data Mining. doi:10.1137/1.9781611975321. hdl:10536/DRO/DU:30109588. ISBN 978-1-61197-532-1. S2CID 21674935.
- ↑ Gujral, Ekta; Papalexakis, Evangelos E. (9 October 2020). "OnlineBTD: Streaming Algorithms to Track the Block Term Decomposition of Large Tensors". 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). pp. 168–177. doi:10.1109/DSAA49011.2020.00029. ISBN 978-1-7281-8206-3. S2CID 227123356.
- ↑ Gujral, Ekta (2022). "Modeling and Mining Multi-Aspect Graphs With Scalable Streaming Tensor Decomposition". arXiv:2210.04404 [cs.SI].
- 1 2 Vasilescu, M.A.O.; Kim, E. (2019). Compositional Hierarchical Tensor Factorization: Representing Hierarchical Intrinsic and Extrinsic Causal Factors. In The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19): Tensor Methods for Emerging Data Science Challenges. arXiv:1911.04180.
- ↑ De Lathauwer, Lieven (2008). "Decompositions of a Higher-Order Tensor in Block Terms—Part II: Definitions and Uniqueness". SIAM Journal on Matrix Analysis and Applications. 30 (3): 1033–1066. doi:10.1137/070690729.
- ↑ Vasilescu, M.A.O.; Kim, E.; Zeng, X.S. (2021), "CausalX: Causal eXplanations and Block Multilinear Factor Analysis", Conference Proc. of the 2020 25th International Conference on Pattern Recognition (ICPR 2020), pp. 10736–10743, arXiv:2102.12853, doi:10.1109/ICPR48806.2021.9412780, ISBN 978-1-7281-8808-9, S2CID 232046205
- ↑ Gujral, Ekta; Pasricha, Ravdeep; Papalexakis, Evangelos (2020-04-20). "Beyond Rank-1: Discovering Rich Community Structure in Multi-Aspect Graphs". Proceedings of the Web Conference 2020. Taipei Taiwan: ACM. pp. 452–462. doi:10.1145/3366423.3380129. ISBN 978-1-4503-7023-3. S2CID 212745714.