Names | |
---|---|
Preferred IUPAC name
3-{[1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl]amino}propane-1-sulfonic acid | |
Other names
N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid | |
Identifiers | |
3D model (JSmol) |
|
ChemSpider | |
ECHA InfoCard | 100.045.398 |
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
C7H17NO6S | |
Molar mass | 243.27 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references |
TAPS ([tris(hydroxymethyl)methylamino]propanesulfonic acid) is a chemical compound commonly used to make buffer solutions.
It can bind divalent cations, including Co(II) and Ni(II).[1]
TAPS is effective to make buffer solutions in the pH range 7.7–9.1, since it has a pKa value of 8.44 (ionic strength I = 0, 25 °C).[2]
The pH (and pKa at I ≠ 0) of the buffer solution changes with concentration and temperature, and this effect may be predicted e.g. using online calculators.[3]
References
- ↑ Machado, Carina M. M.; Gameiro, Paula; Soares, Helena M. V. M. (2008). "Complexation of M–(buffer)x–(OH)y systems involving divalent ions (cobalt or nickel) and zwitterionic biological buffers (AMPSO, DIPSO, TAPS and TAPSO) in aqueous solution". J. Solution Chem. 37 (5): 603–617. doi:10.1007/s10953-008-9265-3.
- ↑ Goldberg, Robert N.; Kishore, Nand; Lennen, Rebecca M. (2002). "Thermodynamic quantities for the ionization reactions of buffers" (PDF). J. Phys. Chem. Ref. Data. 31 (2): 231–370. doi:10.1063/1.1416902.
- ↑ "Biological buffers". REACH Devices.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.