Sphere packing in a sphere is a three-dimensional packing problem with the objective of packing a given number of equal spheres inside a unit sphere. It is the three-dimensional equivalent of the circle packing in a circle problem in two dimensions.

Number of
inner spheres
Maximum radius of inner spheres[1] Packing
density
Optimality Diagram
Exact form Approximate
1 1.0000 1 Trivially optimal.
2 0.5000 0.25 Trivially optimal.
3 0.4641... 0.29988... Trivially optimal.
4 0.4494... 0.36326... Proven optimal.
5 0.4142... 0.35533... Proven optimal.
6 0.4142... 0.42640... Proven optimal.
7 0.3859... 0.40231... Proven optimal.
8 0.3780... 0.43217... Proven optimal.
9 0.3660... 0.44134... Proven optimal.
10 0.3530... 0.44005... Proven optimal.
11 0.3445... 0.45003... Proven optimal.
12 0.3445... 0.49095... Proven optimal.

References

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.