Two of the wind turbines at the Black Law Wind Farm in Scotland

British grid electricity in 2023[1]

  Natural gas (32%)
  Coal (1%)
  Nuclear (14.2%)
  Wind (29.4%)
  Biomass (5%)
  Solar (4.9%)
  Hydro (1.8%)
  Storage (1%)
  Imports (10.7%)

The United Kingdom is the best location for wind power in Europe and one of the best in the world.[2][3] The combination of long coastline, shallow water and strong winds make offshore wind unusually effective.[4]

By 2023, the UK had over 11 thousand wind turbines with a total installed capacity of 30 gigawatts (GW): 15 GW onshore and 15 GW offshore,[5] the sixth largest capacity of any country.[6] Wind power is the largest source of renewable energy in the UK, but at under 5% still far less primary energy than oil or fossil gas.[7]:13 However, wind power generates electricity which is far more powerful in terms of useful energy than the same amount of thermal primary energy. Wind generates more than a quarter of UK electricity, but less than gas over a whole year.[8]

Polling of public opinion consistently shows strong support for wind power in the UK, with nearly three-quarters of the population agreeing with its use, even for people living near onshore wind turbines.[9]

The government has committed to a major expansion of offshore capacity to 50 GW by 2030,[10][11] with 5GW from floating wind.[12] One reason for this is to improve energy security.[13]

History

Blyth's "windmill" at his cottage in Marykirk in 1891
UK Wind farm rated capacity by region
(installed 2015 and 2020, projected by 2025)[14][15]
UK wind farm capacity by region (table of figures)
UK Region Onshore wind capacity Offshore wind capacity
2015 (MW) 2020 (MW) 2015 (MW) 2020 (MW) 2025 (MW)
Projected
Scotland 5,4137,5431748892,743
N.W. England 1111931,0872,0052,005
N.E.England 11617062102102
Yorks & Humber 7718064291,6598,045
N. Ireland 365472000
Wales 448936726726726
East Midlands 56564644641,321
Eastern 1311571,0532,3812,381
S.E. England 60601,0701,4701,470
S.W. England 2020000
UK Totals 7,491 10,414 5,064 9,695 18,792

The world's first electricity generating wind turbine was a battery charging machine installed in July 1887 by Scottish academic James Blyth to light his holiday home in Marykirk, Scotland.[16] It was in 1951 that the first utility grid-connected wind turbine to operate in the United Kingdom was built by John Brown & Company in the Orkney Islands.[16][17] In the 1970s, industrial scale wind generation was first proposed as an electricity source for the United Kingdom. An article on wind power costs from the period suggested that the capital cost per installed kilowatt would be in the range of £150 to £250, but that with inflation this would be competitive, and predicted that lower-cost new windmill designs would soon be available.[18]

In 2007 the United Kingdom Government agreed to an overall European Union target of generating 20% of the EU's energy supply from renewable sources by 2020. Each EU member state was given its own allocated target: for the United Kingdom it is 15%. This was formalised in January 2009 with the passage of the EU Renewables Directive. As renewable heat and renewable fuel production in the United Kingdom are at extremely low bases, RenewableUK estimated that this would require 35–40% of the United Kingdom's electricity to be generated from renewable sources by that date,[19] to be met largely by 33–35 gigawatts (GW) of installed wind capacity.

In December 2007, the Government announced plans for an expansion of wind energy in the United Kingdom, by conducting a Strategic Environmental Assessment of up to 25 GW worth of wind farm offshore sites in preparation for a new round of development. These proposed sites were in addition to the 8 GW worth of sites already awarded in the two earlier rounds of site allocations, Round 1 in 2001 and Round 2 in 2003. Taken together it was estimated that this would result in the construction of over 7,000 offshore wind turbines.[20]

In 2010, 653 MW of offshore wind came online. The following year, only one offshore wind farm, phase 1 of the Walney Wind Farm, was completed in 2011 with a capacity of 183 MW. On 28 December 2011 wind power set a then record contribution to the United Kingdom's demand for electricity of 12.2%.[21]

2012 was a significant year for the offshore wind industry with 4 large wind farms becoming operational with over 1.1 GW of generating capability coming on stream.[22] In the year July 2012 to June 2013, offshore wind farms with a capacity of 1.463 GW were installed, for the first time growing faster than onshore wind which grew by 1.258 GW.[23] The offshore wind industry continued to develop in 2013 with what was once the largest wind farm in the world, the London Array, becoming operational with over 630 MW of generating capability coming on stream.[24]

During 2013, 27.4 TWh of energy was generated by wind power, which contributed 8.7% of the UK's electricity demand.[25]

On 1 August 2013, Deputy Prime Minister Nick Clegg opened the Lincs Offshore Wind Farm. On commissioning the total capacity of wind power exceeded 10 GW of installed capacity. In 2014, Prime Minister David Cameron said that people were "fed up" with wind turbines being built close to homes; onshore wind subsidies were removed and in 2015 planning rules changed to give local authorities strong controls on wind turbine development, greatly reducing onshore deployment.[26]

During 2014, 28.1 TWh of energy was generated by wind power (an average of 3.2 GW, about 24% of the 13.5 GW installed capacity at the time), which contributed 9.3% of the UK's electricity requirement.[27] In the same year, Siemens announced plans to build a £310 million ($264 million) facility for making offshore wind turbines in Paull, England, as Britain's wind power capacity rapidly expanded. Siemens chose the Hull area on the east coast of England because it is close to other large offshore projects planned in coming years. The new plant began producing turbine rotor blades in December 2016.[28] The plant and the associated service centre, in Green Port Hull nearby, will employ about 1,000 workers.[29]

In the first three months of 2023, Britain's wind turbines generated more electricity (32.4%) than gas-fired power stations (31.7%) for the first time.[30]

During 2015, 40.4 TW·h of energy was generated by wind power and the quarterly generation record was set in the three-month period from October to December 2015, with 13% of the nation's electricity demand met by wind.[31] 2015 saw 1.2 GW of new wind power capacity brought online, a 9.6% increase of the total UK installed capacity. Three large offshore wind farms came on stream in 2015, Gwynt y Môr (576 MW max. capacity), Humber Gateway (219 MW) and Westermost Rough (210 MW).

In 2016, the chief executive of DONG Energy (now known as Ørsted A/S), the UK's largest wind farm operator, predicted that wind power could supply more than half of the UK's electricity demand in the future. He pointed to the tumbling cost of green energy as evidence that wind and solar could supplant fossil fuels quicker than expected.[32]

By 2020, climate change concerns led to greater public support for wind turbines, but despite government policy stating onshore wind is a "key building block" for electricity generation it was unclear if the 2015 onshore planning restrictions would be eased.[26] In 2022 three-quarters of the UK population supported further wind generated power in the UK and the majority would be happy for a wind farm to be built near them.[33]

In 2022, wind generation in the UK exceeded 20 GW for the first time, reaching 20.9 GW between 1200h and 1230h on 2 November 2022.[34] This was followed in 2023 with a record 21.6 GW on 10 January during a period of strong winds.[35]

UK wind power capacity and generation
Year[36] Cumulative
capacity
(MW)
Generation
(GWh)
Capacity factor %
(Onshore %, Offshore %)
 % of total
electricity use
Refs
2008 2,974 5,357 20.6 1.50 [37]
2009 4,051 6,904 19.5 2.01 [37]
2010 5,204 7,950 17.4 2.28 [37]
2011 6,540 12,675 22.1 3.81
2012 8,871 20,710 26.7 5.52
2013 10,976 24,500 25.5 7.39 [38]
2014 12,440 28,100 25.8 9.30 [39]
2015 13,602 40,442 33.9 11.0 [40]
2016 16,218 37,368 26.3 12 [41]
2017 19,837 49,607 28.5 17 [41][42]
2018 21,700 57,100 30.0 18 [43][44]
2019 23,950
64,134
32% 21 [45][46]
2020 24,485 75,369 ~35.5
(28, 46)
24 [47]
2021 25,730 64,460 ~29.3
(23, 37)
21 [47]
2022 28,759 80,162 (27.3, 41.1) 24.6 [48]
Yearly wind power generation in the United Kingdom[49]

Wind farms

Wind power in the United Kingdom is located in the United Kingdom
Barrow
Barrow
Beatrice
Beatrice
Blyth
Blyth
Burbo Bank
Burbo Bank
Greater Gabbard 1
Greater Gabbard 1
Greater Gabbard 2
Greater Gabbard 2
Gunfleet Sands
Gunfleet Sands
Gwynt y Môr
Gwynt y Môr
Humber Gateway
Humber Gateway
Kentish Flats
Kentish Flats
Lincs
Lincs
London Array
London Array
Lynn and Inner Dowsing
Lynn and Inner Dowsing
Methil
Methil
North Hoyle
North Hoyle
Ormonde
Ormonde
Rampion
Rampion
Rhyl Flats
Rhyl Flats
Robin Rigg
Robin Rigg
Scroby Sands
Scroby Sands
Sheringham Shoal
Sheringham Shoal
Teesside
Teesside
Thanet
Thanet
Walney
Walney
Wave Hub
Wave Hub
Westermost Rough
Westermost Rough
West of Duddon Sands
West of Duddon Sands
Dudgeon
Dudgeon
European Offshore Wind Deployment Centre
European Offshore Wind Deployment Centre
Hywind Scotland
Hywind Scotland
Race Bank
Race Bank
Sherringham Shoal
Sherringham Shoal
Teesside
Teesside
Milton Keynes
Milton Keynes
Coldham
Coldham
Langford
Langford
Glass Moor
Glass Moor
McCain Foods
McCain Foods
Ransonmoor Farm
Ransonmoor Farm
Red Tile
Red Tile
Stags Holt
Stags Holt
Bears Down
Bears Down
Carland Cross
Carland Cross
Cold Northcott
Cold Northcott
Delabole
Delabole
Four Burrows
Four Burrows
Goonhilly Repowering
Goonhilly Repowering
St Breock
St Breock
WWF Roskrow Barton
WWF Roskrow Barton
Broom Hill
Broom Hill
Hare Hill No. 2
Hare Hill No. 2
High Hedley Hope
High Hedley Hope
High Volts
High Volts
Holmside Hall
Holmside Hall
Langley Park
Langley Park
Tow Law
Tow Law
Trimdon Grange
Trimdon Grange
High Swainston
High Swainston
West Durham
West Durham
WWA High Sharpley
WWA High Sharpley
Askam and Ireleth
Askam and Ireleth
Eastman
Eastman
Fairfield
Fairfield
Great Orton
Great Orton
Harlock Hill
Harlock Hill
Haverigg
Haverigg
Kirkby Moor
Kirkby Moor
Lambrigg
Lambrigg
Lowca
Lowca
Oldside
Oldside
Siddick
Siddick
Wharrels Hill
Wharrels Hill
Winscales Moor
Winscales Moor
Winscales
Winscales
WWU High Pow
WWU High Pow
Hellrigg
Hellrigg
Carsington Pasture
Carsington Pasture
Forestmoor
Forestmoor
Lissett Airfield
Lissett Airfield
Bristol Port
Bristol Port
Out Newton
Out Newton
Little Cheyne Court
Little Cheyne Court
Caton Moor
Caton Moor
Coal Clough
Coal Clough
Scout Moor
Scout Moor
WWP Hameldon Hill
WWP Hameldon Hill
Swinfor
Swinfor
Bagmoor
Bagmoor
Bambers Farm
Bambers Farm
Bicker Fen
Bicker Fen
Conisholme
Conisholme
Deeping St Nicholas
Deeping St Nicholas
Gedney Marsh
Gedney Marsh
Mablethorpe
Mablethorpe
The Hollies
The Hollies
Dagenham
Dagenham
Mersey Docks
Mersey Docks
Royal Seaforth Dock
Royal Seaforth Dock
Frodsham
Frodsham
Blood Hill
Blood Hill
North Pickenham
North Pickenham
Knabs Ridge
Knabs Ridge
Rusholme
Rusholme
Burton Wold
Burton Wold
Blyth Harbour
Blyth Harbour
Kirkheaton
Kirkheaton
Lindhurst
Lindhurst
Westmill
Westmill
Loscar
Loscar
Royd Moor
Royd Moor
Great Eppleton Repowering
Great Eppleton Repowering
Nissan Motors Plant
Nissan Motors Plant
Chelker Reservoir
Chelker Reservoir
Ovenden Moor
Ovenden Moor
Loftsome Bridge
Loftsome Bridge
Brett Martin
Brett Martin
Garves Mountain
Garves Mountain
Corkey
Corkey
Elliot's Hill
Elliot's Hill
Gruig
Gruig
Wolf Bog
Wolf Bog
Balloo Wood
Balloo Wood
Callagheen
Callagheen
Slieve Rushen
Slieve Rushen
Tappaghan Mountain
Tappaghan Mountain
Altahullion
Altahullion
Rigged Hill
Rigged Hill
Bessy Bell
Bessy Bell
Bessy Bell
Bessy Bell
Bin Mountain
Bin Mountain
Hunter's Hill
Hunter's Hill
Lendrum's Bridge
Lendrum's Bridge
Lough Hill
Lough Hill
Owenreagh
Owenreagh
Slieve Divena
Slieve Divena
Ulster University
Ulster University
Boyndie Airfield
Boyndie Airfield
Cairnmore
Cairnmore
Dummuie
Dummuie
Glens of Foudland
Glens of Foudland
Hill of Balquhindachy
Hill of Balquhindachy
Hill of Eastertown
Hill of Eastertown
Hill of Fiddes
Hill of Fiddes
Hill of Skelmonae
Hill of Skelmonae
House O Hill
House O Hill
North Redbog
North Redbog
St John's Wells
St John's Wells
Strath of Brydock
Strath of Brydock
Tullo
Tullo
Twinshiels
Twinshiels
Upper Ardgrain
Upper Ardgrain
Ardkinglas
Ardkinglas
Beinn an Tuirc
Beinn an Tuirc
Beinn Ghlas
Beinn Ghlas
Cruach Mhor
Cruach Mhor
Deucheran Hill
Deucheran Hill
Tangy
Tangy
Artfield Fell
Artfield Fell
Craig
Craig
Dalswinton
Dalswinton
Minsca
Minsca
North Rhins
North Rhins
Wether Hill
Wether Hill
Windy Standard
Windy Standard
Michelin Tyre Factory
Michelin Tyre Factory
Hare Hill
Hare Hill
Aikengall
Aikengall
Myres Hill
Myres Hill
Whitelee
Whitelee
Achairn Farm
Achairn Farm
Achany Estate
Achany Estate
Beinn Tharsuinn
Beinn Tharsuinn
Ben Aketil
Ben Aketil
Bilbster
Bilbster
Boulfruich
Boulfruich
Causeymire
Causeymire
Edinbane
Edinbane
Fairburn Estate
Fairburn Estate
Farr
Farr
Forss
Forss
Forss
Forss
Gigha Community
Gigha Community
Kilbraur
Kilbraur
Millennium
Millennium
Novar
Novar
Findhorn Foundation
Findhorn Foundation
Paul's Hill
Paul's Hill
Rothes
Rothes
Ardrossan
Ardrossan
Wardlaw Wood
Wardlaw Wood
Hagshaw Hill
Hagshaw Hill
Bu Farm
Bu Farm
Burgar Hill
Burgar Hill
Hammars Hill
Hammars Hill
Spurness
Spurness
Drumderg
Drumderg
Green Knowes
Green Knowes
Toddleburn
Toddleburn
Black Hill
Black Hill
Bowbeat
Bowbeat
Carcant
Carcant
Crystal Rig
Crystal Rig
Dun Law
Dun Law
Longpark
Longpark
Burradale
Burradale
Arecleoch
Arecleoch
Hadyard Hill
Hadyard Hill
Black Law
Black Law
Greendykeside
Greendykeside
Hagshaw Hill
Hagshaw Hill
Lochhead Farm
Lochhead Farm
Braes of Doune
Braes of Doune
Burnfoot Hill
Burnfoot Hill
Craigengelt
Craigengelt
Earlsburn
Earlsburn
Pates Hill
Pates Hill
Arnish Moor
Arnish Moor
Llyn Alaw
Llyn Alaw
Alltwalis
Alltwalis
Blaen Bowi
Blaen Bowi
Parc Cynog
Parc Cynog
Cefn Croes
Cefn Croes
Dyffryn Brodyn
Dyffryn Brodyn
Llangwyryfon
Llangwyryfon
Mynydd Gorddu
Mynydd Gorddu
Rheidol
Rheidol
Rhyd-y-Groes
Rhyd-y-Groes
Moel Maelogen
Moel Maelogen
Tir Mostyn & Foel Goch
Tir Mostyn & Foel Goch
Wern Ddu
Wern Ddu
Braich Ddu Farm
Braich Ddu Farm
Hafoty Ucha
Hafoty Ucha
Trysglwyn
Trysglwyn
Ffynnon Oer
Ffynnon Oer
Castle Pill Farm
Castle Pill Farm
Solutia
Solutia
Bryn Titli
Bryn Titli
Carno
Carno
Cemmaes
Cemmaes
Llandinam P&L
Llandinam P&L
Mynydd Clogau
Mynydd Clogau
Taff Ely
Taff Ely
Clyde
Clyde
Fraisthorpe
Fraisthorpe
Kilgallioch
Kilgallioch
Arklow Bank
Arklow Bank
Altagowlan
Altagowlan
Anarget
Anarget
Astellas
Astellas
Ballincollig Hill
Ballincollig Hill
Ballinlough/Ikerrin
Ballinlough/Ikerrin
Ballinveny
Ballinveny
Ballybane
Ballybane
Ballymartin
Ballymartin
Ballywater
Ballywater
Bawnmore
Bawnmore
Barnesmore
Barnesmore
Beal Hill
Beal Hill
Beallough
Beallough
Beam Hill
Beam Hill
Beenageeha
Beenageeha
Bellacorick
Bellacorick
Bindoo
Bindoo
Black Banks
Black Banks
Boggeragh
Boggeragh
Booltiagh
Booltiagh
Burtonport
Burtonport
Caherdowney
Caherdowney
Caranne Hill
Caranne Hill
\Cark
\Cark
Carnsore
Carnsore
Carrigcannon
Carrigcannon
Carrig
Carrig
Carrons
Carrons
Castledockrell
Castledockrell
Clydaghroe
Clydaghroe
Coomacheo 1
Coomacheo 1
Coomacheo 2
Coomacheo 2
Coomatallin
Coomatallin
Cornacahan
Cornacahan
Corneen
Corneen
Corry Mountain
Corry Mountain
Crocane
Crocane
Crockahenny
Crockahenny
Cronalaght
Cronalaght
Cronelea
Cronelea
Cronelea Upper
Cronelea Upper
Cuillalea
Cuillalea
Culliagh
Culliagh
Curragh, Co Cork
Curragh, Co Cork
Curraghgraigue
Curraghgraigue
Derrybrien
Derrybrien
Derrynadivva
Derrynadivva
Dromada
Dromada
Drumlough
Drumlough
Drybridge/Dunmore
Drybridge/Dunmore
Dundalk
Dundalk
Dunmore
Dunmore
Flughland
Flughland
Gartnaneane
Gartnaneane
Geevagh
Geevagh
Glackmore
Glackmore
Glenough
Glenough
Gortahaile
Gortahaile
Grouse Lodge
Grouse Lodge
Garracummer
Garracummer
Gneeves
Gneeves
Greenoge
Greenoge
Inverin
Inverin
Kealkill
Kealkill
Kilgarvan
Kilgarvan
Kilgarvan Extension
Kilgarvan Extension
Killybegs
Killybegs
Kilronan
Kilronan
Kilvinane
Kilvinane
Kingsmountain
Kingsmountain
Knockastanna
Knockastanna
Knockawarriga
Knockawarriga
Lacka Cross
Lacka Cross
Lackan
Lackan
Lahanaght Hill
Lahanaght Hill
Largan Hill
Largan Hill
Lenanavea
Lenanavea
Lisheen
Lisheen
Loughderryduff
Loughderryduff
Lurganboy
Lurganboy
Mace Upper
Mace Upper
Meenachullalan
Meenachullalan
Meenadreen and Meentycat
Meenadreen and Meentycat
Meenanilta
Meenanilta
Glanlee Midas
Glanlee Midas
Mienvee
Mienvee
Milane Hill
Milane Hill
Moanmore
Moanmore
Moneenatieve
Moneenatieve
Mount Eagle
Mount Eagle
Mount Lucas
Mount Lucas
Mountain Lodge
Mountain Lodge
Mullananalt
Mullananalt
Muingnaminnane
Muingnaminnane
Pallas
Pallas
Raheen Barr
Raheen Barr
Rahora
Rahora
Rathmooney
Rathmooney
Reenascreena
Reenascreena
Richfield
Richfield
Seltanaveeny
Seltanaveeny
Shannagh
Shannagh
Sheeragh
Sheeragh
Skehanagh
Skehanagh
Skrine
Skrine
Snugborough
Snugborough
Sonnagh Old
Sonnagh Old
Sorne Hill
Sorne Hill
Spion Kop
Spion Kop
Slieveragh
Slieveragh
Taurbeg
Taurbeg
Tournafulla
Tournafulla
Tullynamoyle
Tullynamoyle
Tursillagh
Tursillagh
Cambernon
Cambernon
Chicheboville
Chicheboville
Clitourps
Clitourps
Conteville
Conteville
Cotentin
Cotentin
Echalot
Echalot
Fierville-Bray
Fierville-Bray
Frénouville
Frénouville
Garcelles-Secqueville
Garcelles-Secqueville
La Haute Chèvre
La Haute Chèvre
Le Mesnil-Opac
Le Mesnil-Opac
Les Hauts Vents
Les Hauts Vents
Les Longs Champs
Les Longs Champs
Saint-Jacques-de-Néhou
Saint-Jacques-de-Néhou
Assigny
Assigny
Avesnes-Beauvoir
Avesnes-Beauvoir
Brachy
Brachy
Callengeville
Callengeville
Fécamp
Fécamp
Forières
Forières
Guerville-Melville
Guerville-Melville
Gueures
Gueures
Harcanville
Harcanville
Harpen Hauts Traits
Harpen Hauts Traits
Harpen Petits Caux
Harpen Petits Caux
La Gaillarde
La Gaillarde
Les Marettes
Les Marettes
Les Vatines
Les Vatines
Manneville
Manneville
Campagnes
Campagnes
Eurotunnel
Eurotunnel
Fruges
Fruges
Haute-Lys
Haute-Lys
Hesdin
Hesdin
Hucqueliers
Hucqueliers
Le Mont d'Aunay
Le Mont d'Aunay
Le Portel
Le Portel
Les Deux-Côtes
Les Deux-Côtes
Locations of wind farms in and around the United Kingdom and Ireland

Offshore

Burbo Bank Offshore Wind Farm.

The total offshore wind power capacity installed in the United Kingdom at the start of 2022 was 11.3 GW. The United Kingdom became the world leader of offshore wind power generation in October 2008 when it overtook Denmark.[50] In 2013, the 175-turbine London Array wind farm, located off the Kent coast, became the largest offshore wind farm in the world; this was surpassed in 2018 by the Walney 3 Extension.

The United Kingdom has been estimated to have over a third of Europe's total offshore wind resource, which is equivalent to three times the electricity needs of the nation at current rates of electricity consumption[51] (In 2010 peak winter demand was 59.3 GW,[52] in summer it drops to about 45 GW). One estimate calculates that wind turbines in one third of United Kingdom waters shallower than 25 metres (82 ft) would, on average, generate 40 GW; turbines in one third of the waters between 25 metres (82 ft) and 50 metres (164 ft) depth would on average generate a further 80 GW, i.e. 120 GW in total.[53] An estimate of the theoretical maximum potential of the United Kingdom's offshore wind resource in all waters to 700 metres (2,300 ft) depth gives the average power as 2200 GW.[54]

The first developments in United Kingdom offshore wind power came about through the now discontinued Non-Fossil Fuel Obligation (NFFO), leading to two wind farms, Blyth Offshore and Gunfleet sands.[55] The NFFO was introduced as part of the Electricity Act 1989 and obliged United Kingdom electricity supply companies to secure specified amounts of electricity from non-fossil sources,[56] which provided the initial spur for the commercial development of renewable energy in the United Kingdom.

2001 saw 17 applications being granted permission to proceed in what has become known as Round 1 of United Kingdom offshore wind development.[57]

Offshore wind projects completed in 20102011 had a levelised cost of electricity of £136/MWh, which fell to £131/MWh for projects completed in 2012–14 and £121/MWh for projects approved in 20122014; the industry hopes to get the cost down to £100/MWh for projects approved in 2020.[58]

The construction price for offshore windfarms has fallen by almost a third since 2012 while technology improved and developers think a new generation of even larger turbines will enable yet more future cost reductions.[59] In 2017 the UK built 53% of the 3.15 GW European offshore wind farm capacity.[60] In 2020, Boris Johnson pledged that, by the end of the decade, offshore wind would generate enough energy to power every UK home.[61]

At the start of 2022 there was a total of 11.26 GW of installed offshore wind capacity.[47] During 2022 an additional 3.2 GW of capacity was added with the commissioning of the Moray East, Triton Knoll and Hornsea Project Two wind farms.[62][63][64] A further 13.6 GW of capacity is either under construction (Neart Na Gaoithe, Sofia, Seagreen & Doggerbank A) or has been awarded a Contract for Difference in Round 3[65] or Round 4.[66]

Future plans

The UK has accelerated its decommissioning of coal power stations aiming for a 2024 phase-out date,[67] and recent British nuclear power stations have encountered significant technical issues and project overruns that have resulted in significant increases in project costs.[68] These issues have resulted in new UK nuclear projects failing to secure project financing. Similarly, SMR technology is not currently economically competitive with offshore wind in the UK. Following the Fukushima nuclear disaster public support for new nuclear has fallen.[69] In response, the UK government increased its previous commitment for 40 GW of Offshore wind capacity by 2030.[70] As of 2020, this represents a 355% increase over current capacity in 10 years. It is expected the Crown Estate will announce multiple new leasing Rounds and increases to existing bidding areas throughout the 20202030 period to achieve the government's aim of 40 GW.

In 2023 the UK Government increased offshore wind planned by the UK by 2030 to 50GW, [71] and has a pipeline of offshore wind power schemes of 100GW.[72]

Scottish offshore

In addition to the UK Round 3 auction, the Scottish Government and the Crown Estate also called for bids on potential sites within Scottish territorial waters. These were originally considered as too deep to provide viable sites, but 17 companies submitted tenders and the Crown Estate initially signed exclusivity agreements with 9 companies for 6 GW worth of sites. Following publication of the Scottish Government's sectoral marine plan for offshore wind energy in Scottish territorial waters in March 2010,[73] six sites were given approval subject to securing detailed consent. Subsequently, 4 sites have been granted agreements for lease.[74]

In 2022 Crown Estate announced the outcome of its application process for ScotWind Leasing, the first Scottish offshore wind leasing round in over a decade and the first ever since the management of offshore wind rights were devolved to Scotland. 17 projects were selected with a capacity of 25 GW.

Scotland has a target for 2030, made in 2023, of 11GW of offshore wind by 2030. This would represent an increase of 400% in offshore wind and a 60% increase in total wind generated power[75]

Onshore

Specialist trailers deliver turbine components to Dorenell Wind Farm.[76]
Turbine blade convoy for Scout Moor Wind Farm passing through Edenfield.
Hafoty Sion Llwyd, on the shore of Llyn Brenig
The Ardrossan Wind Farm in North Ayrshire, Scotland

The first commercial wind farm was built in 1991 at Delabole in Cornwall;[77] it consisted of 10 turbines each with a capacity to generate a maximum of 400 kW. Following this, the early 1990s saw a small but steady growth with half a dozen farms becoming operational each year; the larger wind farms tended to be built on the hills of Wales, examples being Rhyd-y-Groes, Llandinam, Bryn Titli and Carno. Smaller farms were also appearing on the hills and moors of Northern Ireland and England. The end of 1995 saw the first commercial wind farm in Scotland go into operation at Hagshaw Hill. The late 1990s saw sustained growth as the industry matured. In 2000, the first turbines capable of generating more than 1 MW were installed and the pace of growth started to accelerate as the larger power companies like Scottish Power and Scottish & Southern became increasingly involved in order to meet legal requirements to generate a certain amount of electricity using renewable means (see Renewables obligations below). Wind turbine development continued rapidly and by the mid-2000s 2 MW+ turbines were the norm. In 2007, the German wind turbine producer Enercon installed the first 6 MW model ("E-126"); The nameplate capacity was changed from 6 MW to 7 MW after technical revisions were performed in 2009 and to 7.5 MW in 2010.

Growth continued with bigger farms and larger, more efficient turbines sitting on taller and taller masts. Scotland's sparsely populated, hilly and windy countryside became a popular area for developers and the United Kingdom's first 100 MW+ farm went operational in 2006 at Hadyard Hill in South Ayrshire.[78] 2006 also saw the first use of the 3 MW turbine. In 2008, the largest onshore wind farm in England was completed on Scout Moor[79] and the repowering of the Slieve Rushen Wind Farm created the largest farm in Northern Ireland.[80] In 2009, the largest wind farm in the United Kingdom went live at Whitelee on Eaglesham Moor in Scotland.[81] This is a 539 MW wind farm consisting of 215 turbines. Approval has been granted to build several more 100 MW+ wind farms on hills in Scotland and will feature 3.6 MW turbines.

As of September 2013, there were 458 operational onshore wind farms in the United Kingdom with a total of 6565 MW of nameplate capacity. A further 1564 MW of capacity is currently being constructed, while another 4.8 GW of schemes have planning consent.[22]

In 2009, United Kingdom onshore wind farms generated 7,564 GW·h of electricity; this represents a 2% contribution to the total United Kingdom electricity generation (378.5 TW·h).[82]

Large onshore wind farms are usually directly connected to the National Grid, but smaller wind farms are connected to a regional distribution network, termed "embedded generation". In 2009 nearly half of wind generation capacity was embedded generation, but this is expected to reduce in future years as larger wind farms are built.[83]

Gaining planning permission for onshore wind farms continues to prove difficult, with many schemes stalled in the planning system and a high rate of refusal.[84][85] The RenewableUK (formerly BWEA) figures show that there are approximately 7,000 MW worth of onshore schemes waiting for planning permission. On average, a wind farm planning application takes two years to be considered by a local authority, with an approval rate of 40%. This compares extremely unfavourably with other types of major applications, such as housing, retail outlets and roads, 70% of which are decided within the 13- to 16-week statutory deadline; for wind farms the rate is just 6%. Approximately half of all wind farm planning applications, over 4 GW worth of schemes, have objections from airports and traffic control on account of their impact on radar. In 2008 NATS en Route, the BWEA, the Ministry of Defence and other government departments signed a Memorandum of Understanding seeking to establish a mechanism for resolving objections and funding for more technical research.

Wind farms in the UK often have to meet a maximum height limit of 125 m (410 ft) (excluding Scotland). However, modern lower cost wind turbines installed on the continent are over 200 m (660 ft) tall.[86] This planning criteria has stunted the development of onshore wind in the UK.

List of the largest operational and proposed onshore wind farms

  1. Extended May 2007 (1a) & September 2010 (2 & 2a)
  2. Extended September 2006 (Phase 2)
  3. Largest onshore farm in Northern Ireland
  4. Largest operational onshore wind farm in the United Kingdom
  5. Construction began October 2008, completed in June 2011[88]
  6. Construction began August 2010, completed in February 2012[90]
  7. Construction began January 2010, completed in September 2012[91]
  8. Construction finished April 2013[93]
  9. Construction finished April 2013[94]
  10. First power produced September 2013, England's largest onshore wind farm, Completed July 2014[95]
  11. [96]
  12. Construction began June 2013[97]
  13. All 32 turbines connected to the grid.[98]
  14. Officially opened on 28 September.[99] Largest onshore wind farm in Wales.
  15. Construction started March 2017[103] First power in March 2018.[104]
  16. Last turbine base completed in September 2018.[107]
  17. Wind farm online June 2023.[108]
  18. Consent granted April 2012 with reduced number of turbines. Construction started in 2020.[109][110]
  19. Consent granted in 2012. First use of 5 MW turbines onshore. Successful in Contracts for Difference Allocation Round 4[111]
  20. Halted in October 2014 due to external delays[112] Successful in the spring 2019 capacity auction[113]
  21. Successful in the spring 2019 capacity auction[113]
  22. Successful in the spring 2019 capacity auction[113]
  23. Successful in the spring 2019 capacity auction[113]
  24. Consent granted in 2015.
  25. Successful in Contracts for Difference Allocation Round 4[111]
  26. Successful in Contracts for Difference Allocation Round 4[111]
  27. Successful in Contracts for Difference Allocation Round 4[111]
  28. Successful in Contracts for Difference Allocation Round 4[111]

Economics

Subsidies and taxes

From 2002 to 2015, windfarms were subsidised through the Renewables Obligation where British electricity suppliers were required by law to provide a proportion of their sales from renewable sources such as wind power or pay a penalty fee. The supplier then received Renewable Obligation Certificates (ROC) for each MW·h of electricity they have purchased.[114] The Energy Act 2008 introduced banded ROCs for different technologies from April 2009. Onshore wind receives 1 ROC per MWh, but since the Renewables Obligation Banding Review in 2009, offshore wind has received 2 ROCs to reflect its higher costs of generation.[115] In Northern Ireland, a banding of 4 ROCs is available for small onshore turbines.[116]

Wind energy received approximately 40% of the total revenue generated by the Renewables Obligation,[117] and ROCs provided over half of the revenue of the wind farms involved.[118] The total annual cost of the Renewables Obligation reached £6.3 billion in 2019–20, of which 67% was for wind power.[119] This cost was added to end-user electricity bills. Sir David King warned that this could increase UK levels of fuel poverty.[120]

The government closed the Renewables Obligation to new onshore wind power projects in 2016.[121] Support for offshore wind was moved into the government's Contract for Difference (CfD) regime.[122] Support for wind power under this programme rose to £1.7 billion in 2020, with £1.6 billion of that total shared between six offshore windfarms.[123]

In 2023 there was an effective windfall tax.[124][125]

Costs

The economics of wind power are driven by factors such as the capital, operating and finance costs, as well as the operational performance or capacity factor. These factors are in turn affected by issues such as location, turbine size and spacing and, for offshore windfarms, water depth and distance from shore. Operating costs and performance change over a windfarm's life, and several years of data are required before an assessment of the trajectory of these figures can be made.[126]

A review of financial accounts published by the Renewable Energy Foundation in 2020 showed that UK offshore windfarm capital costs rose steadily from 2002 to around 2013, before stabilising and perhaps falling slightly.[126] Operating costs have risen steadily up to the time of the study, but financing costs have fallen. This picture has been confirmed by a comprehensive review of audited accounts data for UK offshore windfarms, which found that levelised costs rose from around £60–70/MWh for early projects, to around £140–160/MWh by 2010–13, before stabilising.[127]

The Renewable Energy Foundation study also examined onshore wind costs, finding that capital costs had risen to around 2011 before declining slightly thereafter, while operating costs had risen steadily.[126] Estimates of the levelised cost of UK onshore wind are older. A 2011 study by the engineering consultancy Mott MacDonald put onshore wind costs at £83/MWh, below new nuclear at £96/MWh.[128]

Auction bids

In the UK's contract for difference auctions of 2017 and 2019, offshore windfarms made bids to supply the grid at strike prices much lower than anything seen before: £57.50/MWh in the 2017 auction[129] and £39.65/MWh in the 2019 one.[130] These values are below the ostensible windfarm costs outlined in the previous section, and have therefore been widely taken as evidence of a fundamental change in the economics of offshore wind power; in other words that technological advances have led to much lower costs.

There has been no similar reduction in bidding prices from onshore windfarms. The lowest successful bid under the CfD regime has been £79.99/MWh.[131]

Effects on electricity price

Historically, wind power had raised costs of electricity slightly. In 2015, it was estimated that the use of wind power in the UK had added £18 to the average yearly electricity bill.[132] This was the additional cost to consumers of using wind to generate about 9.3% of the annual total (see table below) – about £2 for each 1%.

The building of UK wind farms has been supported through the Renewables Obligation and, since 2016, by price guarantee support through the Contracts for Difference regime too. The 2018 levelised cost of electricity (LCOE) of offshore wind was in the range £100–150/MWh.[127] However, in recent CfD auctions, strike prices as low as £39.65/MWh have been agreed for offshore wind projects, which has led to an assumption that there has been an equivalent reduction in the underlying costs.[133][134] Due to the structure of the contract for difference arrangements wind generators pay the government when power prices exceed the strike price.[135] Wholesale power prices averaged £57/MWh in 2018 and £113/MWh in 2021 before spiking above £400/MWh in 2022.[136]

Offshore wind has historically been more expensive than onshore wind, but in 2016 it was predicted that it would have the lowest levelised cost of electricity in the United Kingdom in 2020 when a carbon cost was applied to generating technologies.[137]:p25 In the 2022 AR4 CFD auction, offshore wind cleared at an average price of £37.35/MWh versus onshore winds average price of £42.47/MWh (both 2012 prices).[138]

Actual cost performance

A statistical and econometric analysis of a majority of onshore and offshore windfarms built in the United Kingdom since 2002 with a capacity of more than 10MW has been performed by a former professor of the School of Economics at the University of Edinburgh on behalf of an anti wind power organisation. It finds that the actual cost of onshore and offshore wind generation has not fallen significantly. Rather, capital and operating costs per MW have increased, the latter driven by higher than expected frequency of equipment failure and preventative maintenance associated with new generations of larger turbines. The study concludes that, after current contracts guaranteeing above-market prices expire, expected revenues from generation will be less than operating cost. If confirmed, this would require financial regulators to impose heavy risk weightings on loans to offshore wind farm operators, effectively making them too risky for pension funds and small investors.[139]

Onshore capacity factor by season[140]
DaytimeOvernightOverall
Winter 44%36%38%
Summer 31%13%20%

Wind-generated power is a variable resource, and the amount of electricity produced at any given point in time by a given plant will depend on wind speeds, air density and turbine characteristics (among other factors). If wind speed is too low (less than about 2.5 m/s) then the wind turbines will not be able to make electricity, and if it is too high (more than about 25 m/s) the turbines will have to be shut down to avoid damage. When this happens other power sources must have the capacity to meet demand,[51][141] Three reports on the wind variability in the United Kingdom issued in 2009, generally agree that variability of the wind does not make the grid unmanageable; and the additional costs, which are modest, can be quantified.[142] For wind power market penetration of up to 20% studies in the UK show a cost of £3-5/MWh.[143] In the United Kingdom, demand for electricity is higher in winter than in summer and so are wind speeds.[144][145]

While the output from a single turbine can vary greatly and rapidly as local wind speeds vary, as more turbines are connected over larger and larger areas the average power output becomes less variable.[146] Studies by Graham Sinden suggest that, in practice, the variations in thousands of wind turbines, spread out over several different sites and wind regimes, are smoothed, rather than intermittent. As the distance between sites increases, the correlation between wind speeds measured at those sites, decreases.[140][147]

The 2021 United Kingdom natural gas supplier crisis increased electricity prices,[148] which were further worsened by rising demand amidst a lack of wind.[149][150] During storms, power prices have occasionally become zero or even negative.[151]

Constraint payments

The development of the GB grid was characterised by the close proximity of major sources and demand for electricity. Since wind farms tend to be sited far from centres of demand, transmission capacity can be inadequate to deliver electricity to users, particularly when wind speeds are high. When the grid cannot deliver electricity generated, wind farm operators are paid to switch off. It is normally necessary to pay another generator – normally a gas-fired power station – on the other side of the constraint to switch on as well, to ensure that demand is met. These two incentives are referred to as "constraint payments"[152] or curtailment,[151] and they are one source of criticism of the use of wind power and its implementation; in 2011 it was estimated that nearly £10 million in constraint payments would be received, representing ten times the value of the potential lost electricity generation.[153] Wind farm constraint payments have increased substantially year on year, £224 million, out of a total of £409 million in 2020–21.[154] In addition, £582 million was spent rebalancing the system afterwards, mainly to gas-fired power stations.[151]

Backup and Frequency Response

There is some dispute over the necessary amount of reserve or backup required to support the large-scale use of wind and solar energy due to the variable nature of its supply. In a 2008 submission to the House of Lords Economic Affairs Committee, E.ON UK argued that it is necessary to have up to 80–90% backup.[155] Other studies give a requirement of 15% to 22% of installed intermittent capacity.[143] National Grid, which has responsibility for balancing the grid, reported in June 2009 that the electricity distribution grid could cope with on-off wind energy without spending a lot on backup, but only by rationing electricity at peak times using a so-called "smart grid", developing increased energy storage technology and increasing interconnection with the rest of Europe.[156][157] In June 2011, several energy companies including Centrica told the government that 17 gas-fired plants costing £10 billion would be needed by 2020 to act as back-up generation for wind. However, as they would be standing idle for much of the time they would require "capacity payments" to make the investment economic, on top of the subsidies already paid for wind. In 20152016, National Grid contracted 10 coal and gas-fired plants to keep spare capacity on standby for all generation modes, at a cost of £122 million, which represented 0.3% of an average electricity bill.[158]

Grid scale battery storage is being developed in order to cope with the variability in wind and solar power. As of May 2021, 1.3 GW of grid storage batteries was active,[159][160] along with the traditional 2.5 GW of pumped storage at Dinorwig, Cruachan and Ffestiniog. How much capacity this represents is unclear as GWh values are not disclosed.

With the increase in proportion of energy being generated by wind and solar on the UK grid, there is a significant reduction in synchronous generation. Therefore, in order to ensure grid stability, the National grid ESO is piloting a range of demand side and supply side frequency response products.[161]

Public opinion

Surveys of public attitudes across Europe and in many other countries show strong public support for wind power.[162][163][164] About 80 per cent of EU citizens support wind power.[165]

Which should be increased in Scotland?[166]

A 2003 survey of residents living around Scotland's 10 existing wind farms found high levels of community acceptance and strong support for wind power, with much support from those who lived closest to the wind farms. The results of this survey support those of an earlier Scottish Executive survey 'Public attitudes to the Environment in Scotland 2002', which found that the Scottish public would prefer the majority of their electricity to come from renewables and which rated wind power as the cleanest source of renewable energy.[167] A survey conducted in 2005 showed that 74% of people in Scotland agree that wind farms are necessary to meet current and future energy needs. When people were asked the same question in a Scottish renewables study conducted in 2010, 78% agreed. The increase is significant as there were twice as many wind farms in 2010 as there were in 2005. The 2010 survey also showed that 52% disagreed with the statement that wind farms are "ugly and a blot on the landscape". 59% agreed that wind farms were necessary and that how they looked was unimportant.[168] Scotland is planning to obtain 100% of electricity from renewable sources by 2020.[169]

A British 2015 survey showed 68% support and 10% opposition to onshore wind farms.[170]

Politics

In the UK, the ruling Conservative government was previously opposed to further onshore wind turbines and cancelled subsidies for new onshore wind turbines from April 2016.[171] The former prime minister David Cameron stated that "We will halt the spread of onshore wind farms",[172] and claimed that "People are fed up with onshore wind" though polls of public opinion showed the converse.[173] Leo Murray of Possible (formerly 10:10 Climate Action) said, "It looks increasingly absurd that the Conservatives have effectively banned Britain's cheapest source of new power."[174] As the UK's Conservative government was opposed to onshore wind power it attempted to cancel existing subsidies for onshore wind turbines a year early from April 2016, although the House of Lords struck those changes down.[175]

The wind power industry has claimed that the policy will increase electricity prices for consumers as onshore wind is one of the cheapest power technologies,[172] although the government disputes this,[171] and it is estimated that 2,500 turbines will not now be built.[171] Questions have been raised about whether the country will now meet its renewable obligations, as Committee on Climate Change has stated that 25GW of onshore wind may be needed by 2030.[176]

In 2020, the Boris Johnson-led government decided to permit onshore wind power, and since December 2021 onshore wind developers have been able to compete in subsidy auctions with solar power and offshore wind.[177][178] On 24 September 2020, Boris Johnson reaffirmed his commitment to renewables, especially wind power and nuclear in the United Kingdom. He said that the UK can be the "Saudi Arabia of wind power",[179] and that

We've got huge, huge gusts of wind going around the north of our country—Scotland. Quite extraordinary potential we have for wind.[180]

Records

December 2014 was a record breaking month for UK wind power. A total of 3.90 TWh of electricity was generated in the month – supplying 13.9% of the UK's electricity demand.[181] On 19 October 2014, wind power supplied just under 20% of the UK's electrical energy that day. Additionally, as a result of eight of 16 nuclear reactors being offline for maintenance or repair, wind produced more energy than nuclear did that day.[182][183] The week starting 16 December 2013, wind generated a record 783,886 MWh – providing 13% of Britain's total electricity needs that week. And on 21 December, a record daily amount of electricity was produced with 132,812 MWh generated, representing 17% of the nation's total electricity demand on that day.[184]

In January 2018 metered wind power peaked at over 10 GW and contributed up to a peak of 42% of the UK's total electricity supply.[185] In March, maximum wind power generation reached 14 GW, meaning nearly 37% of the nation's electricity was generated by wind power operating at over 70% capacity.[186] On 5 December 2019, maximum wind power generation reached 15.6 GW.[187] At around 2 am on 1 July 2019, wind power was producing 50.64% of the electricity supply, perhaps the first time that over half of the UK's electricity was produced by wind,[188] while at 2:00 am on 8 February 2019, wind power was producing 56.05% of the electricity supply.[189] Wind power first exceeded 16GW on 8 December 2019 during Storm Atiyah.[190]

On Boxing Day 2020, a record 50.67% of energy used in the United Kingdom was generated by wind power. However, it was not the highest daily amount of energy ever generated by wind turbines; that came earlier in December 2020, when demand was higher than on Boxing Day and wind turbines supplied 40% of the energy required by the National Grid (17.3 GW).[191][192] However, on 26 August 2020, wind briefly contributed 59.9% of the grids electricity mix.[193]

In 2022 a new record was set on 24 May with maximum wind power generation reaching 19.916 GW.[194] Then on 2 November wind generation reached 20.896 GW, providing 53% of Britain's electricity between 12:00pm and 12:30pm.[195]

10 January 2023 saw 21.620 GW of generation, the first time over 21 GW had been produced by wind power in the UK.[196]

Manufacturing

As of 2020, there were no major UK-based wind turbine manufacturers: most are headquartered in Denmark, Germany and the USA.

In 2014, Siemens announced plans to build facilities for offshore wind turbines in Kingston upon Hull, England, as Britain's wind power rapidly expands. The new plant was expected to begin producing turbine rotor blades in 2016. By 2019, blades were being shipped in large numbers.[197] The plant and the associated service centre, in Green Port Hull nearby, will employ about 1,000 workers. The facilities will serve the UK market, where the electricity that major power producers generate from wind grew by about 38 per cent in 2013, representing about 6 per cent of total electricity, according to government figures. At the time there were plans to continue to increase Britain's wind-generating capacity, to 14 GW by 2020.[29] In fact, that figure was exceeded in late 2015.

On 16 October 2014, TAG Energy Solutions announced the mothballing and semi closure of its Haverton Hill construction base near Billingham with between 70 and 100 staff redundancies after failing to secure any subsequent work following the order for 16 steel foundations for the Humber Estuary in East Yorkshire.[198]

In June 2016, Global Energy Group announced it had signed a contract in association with Siemens to fabricate and assemble turbines for the Beatrice Wind Farm, at its Nigg Energy Park site. It hopes in the future to become a centre for excellence and has opened a skills academy to help re-train previous offshore workers for green energy projects.[199]

During 2021, £900M were invested in UK offshore wind power manufacturing.[200] The UK offshore wind industry occupied 19,600 people directly in 2021, while thousands others worked in related businesses.[201]

Specific regions

Wind power in Scotland

Wind power is Scotland's fastest growing renewable energy technology, with 5328 MW of installed capacity as of March 2015. This includes 5131 MW of onshore wind and 197 MW of offshore wind.[202]

Whitelee Wind Farm near Eaglesham, East Renfrewshire is the largest onshore wind farm in the United Kingdom with 215 Siemens and Alstom wind turbines and a total capacity of 539 MW.[203] Clyde Wind Farm near Abington, South Lanarkshire is the UK's second largest onshore wind farm comprising 152 turbines with a total installed capacity of 350 MW.[204] There are many other large onshore wind farms in Scotland, at various stages of development, including some that are in community ownership.

Robin Rigg Wind Farm in the Solway Firth is Scotland's only commercial-scale, operational offshore wind farm. Completed in 2010, the farm comprises 60 Vestas turbines with a total installed capacity of 180 MW.[205] Scotland is also home to two offshore wind demonstration projects: The two turbine, 10 MW Beatrice Demonstrator Project located in the Moray Firth, has led to construction of the 84 turbine, 588MW Beatrice Wind Farm set to begin in 2017 and the single turbine, 7 MW Fife Energy Park Offshore Demonstration Wind Turbine in the Firth of Forth. There are also several other commercial-scale and demonstration projects in the planning stages.[206]

The siting of turbines is often an issue, but multiple surveys have shown high local community acceptance for wind power in Scotland.[207][208][209] There is further potential for expansion, especially offshore given the high average wind speeds, and a number of large offshore wind farms are planned.

The Scottish Government has achieved its target of generating 50% of Scotland's electricity from renewable energy by 2015, and is hoping to achieve 100% by 2020. Renewables produced 97.4% of Scotland's net electricity in 2020, mostly from wind power.[210]

In July 2017 work commissioning an experimental floating wind farm known as Hywind at Peterhead began. The wind farm is expected to supply power to 20,000 homes. Manufactured by Statoil, the floating turbines can be located in water up to a kilometre deep.[211] In its first two years of operation the facility with five floating wind turbines, giving a total installed capacity of 30 MW, has averaged a capacity factor in excess of 50%[212]

See also

Related lists
Related United Kingdom pages
Developers and operators
Other related

References

  1. "Britain's Electricity Explained: 2023 Review". National Grid ESO. 9 January 2024. Retrieved 10 January 2024.
  2. "UK Renewable Energy Roadmap Crown copyright, July 2011" (PDF). Retrieved 3 February 2018.
  3. Lu, Xi, Michael B. McElroy, and Juha Kiviluoma. 2009. "Global potential for wind-generated electricity". Proceedings of the National Academy of Sciences of the United States of America 106(27): 10933-10938.
  4. Frangoul, Anmar (9 October 2023). "The world's largest offshore wind farm produces its first power". CNBC. Retrieved 24 November 2023.
  5. "UK Wind Energy Database (UKWED)". RenewableUK. Retrieved 23 October 2023.
  6. "Wind power production for main countries". thewindpower.net. Retrieved 17 April 2021.
  7. "UK ENERGY IN BRIEF 2023" (PDF).
  8. George, Sarah. "What did the UK's electricity generation mix look like in 2022? - edie". edie. Retrieved 17 September 2023.
  9. "Onshore wind more popular with Conservative voters than MPs realise". The Independent. 16 November 2022. Retrieved 17 September 2023.
  10. "Queen's Speech December 2019" (PDF). GOV.UK. Retrieved 20 January 2020.
  11. "G. B. National Grid status". gridwatch.templar.co.uk. Retrieved 20 September 2019.
  12. "Statement on the British Energy Security Strategy". Archived from the original on 19 April 2022.
  13. "British Energy Security Strategy" (PDF).
  14. Mark Stolworthy. "Operating Power Stations". Gridwatch.co.uk. Retrieved 11 February 2021.
  15. "Global Offshore Map". 4C offshore. Retrieved 11 February 2021.
  16. 1 2 Price, Trevor J. (2004). "Blyth, James (1839–1906)". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/100957. (Subscription or UK public library membership required.)
  17. "Costa Head Experimental Wind Turbine". Orkney Sustainable Energy Website. Orkney Sustainable Energy Ltd. Archived from the original on 3 April 2018. Retrieved 19 December 2010.
  18. Peter Musgrove (9 December 1976). "Windmills change direction". New Scientist. 72 (1030): 596–7. ISSN 0262-4079.
  19. McKenna, John. (8 April 2009) New Civil Engineer – Wind power: Chancellor urged to use budget to aid ailing developers. Nce.co.uk.
  20. Eccleston, Paul (4 October 2007). "Britain's massive offshore wind power potential". The Daily Telegraph. Archived from the original on 12 January 2022. Retrieved 21 July 2021.
  21. RenewableUK news article – Wind farms hit high of more than 12% of UK electricity demand Archived 22 January 2012 at the Wayback Machine. Bwea.com (6 January 2012).
  22. 1 2 "Contact with BWEA Admin". Retrieved 8 September 2018.
  23. "Record-Breaking Year for UK Offshore Wind" Offshorewind.biz, 6 November 2013. Retrieved 6 November 2013.
  24. "London Array wind farm opened by Prime Minister". BBC News. 4 July 2013. Retrieved 9 June 2015.
  25. "DECC Energy trends statistics section 6: renewables" (PDF). Retrieved 3 February 2018.
  26. 1 2 Millard, Rachel (13 December 2021). "Wind turbine expansion thrown into doubt". The Daily Telegraph. Archived from the original on 12 January 2022. Retrieved 14 December 2021.
  27. RenewableUK. "RenewableUK – RenewableUK News – Electricity needs of more than a quarter of UK homes powered by wind in 2014". renewableuk.com. Archived from the original on 9 May 2015. Retrieved 9 June 2015.
  28. Vaughan, Adam (1 December 2016). "Hull's Siemens factory produces first batch of wind turbine blades". The Guardian. Retrieved 26 August 2019.
  29. 1 2 Stanley Reedmarch (25 March 2014). "Siemens to Invest $264 Million in British Wind Turbine Project". The New York Times.
  30. "Wind powers Britain more than gas for first time". Drax. 10 May 2023. Archived from the original on 14 May 2023.
  31. RenewableUK. "RenewableUK – RenewableUK News – New-records-set-in-best-ever-year-for-British-wind-energy-generation". renewableuk.com. Retrieved 20 October 2016.
  32. Wind turbines 'could supply most of UK's electricity' The Guardian 8 November 2016
  33. Three-quarters of Britons back expansion of wind power, poll reveals The Guardian
  34. Rob Norris (3 November 2022). "Wind power sets another generation record - reaching over 20 gigawatts for first time". RenewablesUK News Releases. RenewablesUK. Retrieved 4 November 2022.
  35. "UK sets new record for wind generation thanks to blustery conditions". Financial Times. 11 January 2023. Retrieved 13 January 2023.
  36. "Digest of UK energy statistics (DUKES)". decc.gov.uk. Retrieved 9 June 2015.
  37. 1 2 3 "Department of Energy and Climate Change". Archived from the original on 23 December 2012. Retrieved 16 August 2020.
  38. "DECC Energy Trends March 2014" (PDF). Retrieved 3 February 2018.
  39. "Wind in power – 2014 European statistics" (PDF). 16 February 2015. Retrieved 27 March 2019.
  40. "Wind in power – 2015 European statistics" (PDF). 5 February 2016. Retrieved 27 March 2019.
  41. 1 2 "BEIS renewables statistics" (PDF). Retrieved 16 March 2018.
  42. "Wind power grows 45%". Retrieved 18 March 2018.
  43. "BEIS renewables statistics" (PDF). Retrieved 26 May 2019.
  44. "Wind energy in Europe in 2018" (PDF). 21 February 2019. Retrieved 26 May 2019.
  45. "2019 saw the rise of wind power and the collapse of coal". The Independent. 9 January 2020.
  46. Digest of United Kingdom Energy Statistics, 2019 (PDF). BEIS. Chart 5.6 and Chart 6.4. Retrieved 31 July 2020.
  47. 1 2 3 "Table 6.1. Renewable electricity capacity and generation". GOV.UK. 31 March 2022. Retrieved 3 April 2022.
  48. "Energy Trends: UK renewables". GOV.UK. Retrieved 30 March 2023.
  49. "GWEC, Global Wind Report Annual Market Update". Gwec.net. Retrieved 20 May 2017.
  50. Jha, Alok (21 October 2008). "UK overtakes Denmark as world's biggest offshore wind generator". The Guardian. London. Retrieved 12 November 2008.
  51. 1 2 Oswald, James; Raine, Mike; Ashraf-Ball, Hezlin (June 2008). "Will British weather provide reliable electricity?" (PDF). Energy Policy. 36 (8): 2312–2325. doi:10.1016/j.enpol.2008.04.033.
  52. National Grid Table of Indicative Triad Demand Information showing 7 January 2010 peak Archived 18 January 2013 at archive.today. Bmreports.com.
  53. MacKay, David. Sustainable Energy – without the hot air. pp. 60–62. Retrieved 3 April 2010.
  54. "Two Terawatts average power output: the UK offshore wind resource". Retrieved 2 August 2010.
  55. RenewableUK – Offshore Wind Introduction Archived 29 July 2012 at archive.today. Bwea.com.
  56. REPP report into Non-Fossil Fuel subsidies in the UK Archived 25 September 2017 at the Wayback Machine. Repp.org (30 June 1998).
  57. "The Crown Estate map of Operational Offshore energy – Round 1 wind farms in red" (PDF). Retrieved 3 February 2018.
  58. "Cost Reduction Monitoring Framework". ORE Catapult. February 2015. pp. 7 and. Archived from the original (pdf) on 22 July 2015. Retrieved 20 July 2015.
  59. Huge boost for renewables as offshore windfarm costs fall to record low The Guardian
  60. UK built half of Europe's offshore wind power in 2017 The Guardian
  61. Ziady, Hanna (6 October 2020). "All 30 million British homes could be powered by offshore wind in 2030". CNN. Retrieved 6 October 2020.
  62. ScottishGovernment. "ScottishGovernment – News – Consent for offshore wind development". scotland.gov.uk. Archived from the original on 18 June 2015. Retrieved 9 June 2015.
  63. "About Triton Knoll – Triton Knoll". Retrieved 8 July 2021.
  64. Ltd, Renews (8 August 2022). "Triton Knoll owners request OFTO handover exemption". reNEWS - Renewable Energy News.
  65. "Contracts for Difference (CfD) Allocation Round 3: results - published 20 September 2019, revised 11 October 2019". GOV.UK. Retrieved 14 October 2022.
  66. "Contracts for Difference (CfD) Allocation Round 4: results (accessible webpage)". GOV.UK. Retrieved 14 October 2022.
  67. Vaughan, Adam (4 February 2020). "UK coal phase-out date pulled forward". Business Green. ISSN 0261-3077. Retrieved 25 February 2020.
  68. Vaughan, Adam (10 April 2018). "EDF warns of delays at Flamanville nuclear power station in France". The Guardian. ISSN 0261-3077. Retrieved 20 February 2020.
  69. Vaughan, Adam (4 August 2015). "Public support for UK nuclear and shale gas falls to new low". The Guardian. ISSN 0261-3077. Retrieved 20 February 2020.
  70. "Queen's Speech: Government ramps up offshore wind target to 40GW". businessgreen.com. 19 December 2019. Retrieved 20 February 2020.
  71. "Offshore wind". Retrieved 14 November 2023.
  72. "UK's offshore wind pipeline close to 100GW mark, RenewableUK confirms". Edie.net. 16 February 2023. Retrieved 23 November 2023.
  73. – Scottish Government Blue Seas – Green Energy Report Archived 24 January 2012 at the Wayback Machine. Scotland.gov.uk (18 March 2011).
  74. Table of Scottish Offshore Zones, The Crown Estate Archived 9 November 2014 at the Wayback Machine. Thecrownestate.co.uk.
  75. "Ministers downgrade Scottish offshore energy projection". BBC News. 13 November 2023.
  76. Walker, Shell (19 December 2018). "Dorenell's 59 Turbines Delivered!". Collett & Sons. Retrieved 11 February 2019.
  77. Delabole Village website. Delabole.com.
  78. SSE Hadyard Hill website. Scottish-southern.co.uk.
  79. article on opening of Scout Moor wind farm. BBC News (25 September 2008).
  80. "Turley Associates Slieve Rushen Project website". Archived from the original on 20 November 2008. Retrieved 3 February 2018.
  81. Whitelee wind farm website. Whiteleewindfarm.co.uk.
  82. Department of Energy and Climate Change (2010), Digest of United Kingdom energy statistics (DUKES) 2010, Stationery Office, ISBN 978-0-11-515526-0, retrieved 7 June 2011
  83. "Embedded and Renewable Generation". 2009 Seven Year Statement. National Grid. 2009. Archived from the original on 14 July 2011. Retrieved 13 February 2011.
  84. BWEA News – Decision makers must heed Stern warning on climate change. Bwea.com (2 March 2007).
  85. Harvey, Fiona (27 February 2012). "Has the wind revolution stalled in the UK?". The Guardian. London. Retrieved 5 April 2012.
  86. Evans-Pritchard, Ambrose (3 February 2018). "Britain abandons onshore wind just as new technology makes it cheap". The Daily Telegraph. Archived from the original on 12 January 2022. Retrieved 3 February 2018.
  87. Renewables-map website. Renewables-map.co.uk.
  88. according to Renewable UK website Archived 1 October 2011 at the Wayback Machine. Bwea.com.
  89. Siemens news article. Siemens.co.uk.
  90. RenewableUK – UKWED Operational wind farms Archived 1 October 2011 at the Wayback Machine. Bwea.com.
  91. "Clyde Project website". Retrieved 3 February 2018.
  92. Fallago Rig Project website milestone document. (PDF).
  93. "RenewableUK | UK Wind Energy Database (UKWED)". Archived from the original on 26 November 2015. Retrieved 28 May 2015.. RenewableUK.com.
  94. "Renewable UK". Archived from the original on 26 November 2015.
  95. "SSE Hungry for more at Keadby". renews.biz. 17 July 2014. Retrieved 27 March 2019.
  96. ScottishPower Harestanes Project website. Scottishpowerrenewables.com.
  97. "Clashindarroch Wind Farm, Aberdeenshire, Scotland". PowerTechnology. 2015. Retrieved 11 October 2020.
  98. SSE Bhlaraidh Project webpage. SSE.com (November 2017).
  99. Vattenfall Pen y Cymoedd Project website. Vattenfall (28 September 2017).
  100. ScottishPower Kilgallioch Project webpage.
  101. SSE Clyde Extension Project webpage. SSE.com (20 October 2016).
  102. "SSE's 228-MW Stronelairg wind farm working at full capacity". Renewablesnow.com.
  103. SSE Stronelairg Project website Archived 15 March 2015 at the Wayback Machine. Sse.com.
  104. "Stronelairg delivers first power". Renews Ltd. 28 March 2018. Retrieved 25 September 2018.
  105. "Dorenell wind farm officially open". EDF.
  106. "Community Benefit Fund".
  107. "Morrison reaches milestone at Dorenell Wind Farm".
  108. "Wind farm which will help produce Irn-Bru opens". 13 June 2023. Retrieved 13 June 2023.
  109. "Plan for UK's biggest onshore wind farm to proceed". BBC News. 17 June 2020. Retrieved 18 June 2020.
  110. "Island torn apart in wind turbine row". The Herald. Glasgow.
  111. 1 2 3 4 5 "Contracts for Difference (CfD) Allocation Round 4: results". GOV.UK. Retrieved 13 October 2022.
  112. John Muir Trust. johnmuirtrust.org (20 October 2016).
  113. 1 2 3 4 "Contracts for Difference (CfD) Allocation Round 3: results". 20 September 2019.
  114. Renewables Obligation. Ofgem.gov.uk.
  115. "Government Response to the 2009 Consultation on the Renewables Obligation" (PDF). Department of Energy and Climate Change (DECC). December 2009. Archived from the original (PDF) on 25 October 2012. Retrieved 2 March 2012.
  116. "NIRO Banding Tables" (PDF). Northern Ireland Department for the Economy. 1 July 2015. Retrieved 9 April 2021.
  117. Annual Report 2008-09. (PDF).
  118. Hutson, Graham; Siret, Mal. "The Times – UK News, World News and Opinion". The Times. London.
  119. Renewables Obligation Annual Report 2019-20, Ofgem 2020. https://www.ofgem.gov.uk/system/files/docs/2021/03/ro_annual_report_2019-20_final_v1_0.pdf
  120. "Poverty fears over wind power". BBC News. 4 September 2008.
  121. "Changes to onshore wind subsidies protect investment and get the best deal for bill payers". gov.uk. Retrieved 10 August 2015.
  122. "Contract for Difference in Great Britain: The offshore wind round?". Norton Rose Fulbright. 1 November 2016. Retrieved 15 June 2017.
  123. "Actual CfD Generation and avoided GHG emissions". Low Carbon Contracts Company. Retrieved 16 April 2021.
  124. "British low-carbon generators face de facto windfall tax". Financial Times. 11 October 2022. Archived from the original on 11 December 2022. Retrieved 19 October 2022.
  125. Bell, Adam. "Opinion: Welcome to Schrodinger's windfall tax on renewables in the UK". windpowermonthly.com. Retrieved 19 October 2022.
  126. 1 2 3 Hughes, Gordon. "Wind Power Economics, Rhetoric & Reality, Vol. 1: Wind Power Costs in the United Kingdom" (PDF). Renewable Energy Foundation. Retrieved 1 April 2021.
  127. 1 2 Aldersey-Williams, John; Broadbent, Ian D.; Strachan, Peter A. (May 2019). "Better estimates of LCOE from audited accounts – A new methodology with examples from United Kingdom offshore wind and CCGT". Energy Policy. 128: 25–35. doi:10.1016/j.enpol.2018.12.044. hdl:10059/3298. S2CID 158158724.
  128. "Costs of low-carbon generation technologies" (PDF), Mott MacDonald, Committee on Climate Change, May 2011, archived from the original (PDF) on 4 October 2013, retrieved 11 June 2011
  129. "Moray Offshore Windfarm (East) Phase 1". Low Carbon Contracts Company. Retrieved 9 April 2021.
  130. "Dogger Bank A P1". Low Carbon Contracts Company. Retrieved 9 April 2021.
  131. "Sneddon Law Community Wind Farm". Low Carbon Contracts Company. Retrieved 9 April 2021.
  132. Press Association (2 March 2015). "British public thinks wind power subsidies are 14 times higher than reality". The Guardian. Retrieved 9 June 2015.
  133. Evans-Pritchard, Ambrose (20 September 2019). "Rejoice: Britain's huge gamble on offshore wind has hit the jackpot". The Daily Telegraph. Archived from the original on 12 January 2022. Retrieved 21 September 2019.
  134. "Clean energy to power over seven million homes by 2025 at record low prices". GOV.UK. Retrieved 20 September 2019.
  135. "What is a Contract for Difference and why do we need it?". EMR Settlement Limited.
  136. "Drax Electric Insights". Drax.
  137. "ELECTRICITY GENERATION COSTS" (PDF). gov.uk. BEIS. November 2016. Retrieved 6 December 2016.
  138. "Almost 11GW of capacity secured in biggest CfD auction ever". Current. 7 July 2022. Retrieved 31 August 2022.
  139. Hughes, Gordon (2020). Wind Power Costs in the United Kingdom (PDF). Wind Power Economics: Rhetoric & Reality. Vol. 1. Salisbury: Renewable Energy Foundation.
  140. 1 2 Graham Sinden (1 December 2005). "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand" (PDF). Energy Policy. 35 (1): 112–127. doi:10.1016/j.enpol.2005.10.003. Archived from the original (PDF) on 9 December 2010. Retrieved 13 February 2011.
  141. Mason, Rowena (11 January 2010). "Wind farms produced 'practically no electricity' during Britain's cold snap". The Daily Telegraph. London.
  142. Wind Energy Variability and Intermittency in the UK. Claverton-energy.com (28 August 2009).
  143. 1 2 "Archived copy" (PDF). Archived from the original (PDF) on 18 March 2009. Retrieved 22 July 2010.{{cite web}}: CS1 maint: archived copy as title (link) UKERC: The Costs and Impacts of Intermittency: An assessment of the evidence on the costs and impacts of intermittent generation on the British electricity network
  144. David Dixon, Nuclear Engineer (9 August 2006). "Wind Generation's Performance during the July 2006 California Heat Storm". US DOE, Oakland Operations.
  145. Graham Sinden (1 December 2005). "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand". Energy Policy. 35: 112–127. doi:10.1016/j.enpol.2005.10.003.
  146. "Variability of Wind Power and other Renewables: Management Options and Strategies" (PDF). IEA. 2005. Retrieved 15 October 2008.
  147. Diesendorf, Mark (2007), Greenhouse Solutions with Sustainable Energy, p. 119, [Graham Sinden] analysed over 30 years of hourly wind speed data from 66 sites spread out over the United Kingdom. He found that the correlation coefficient of wind power fell from 0.6 at 200 km to 0.25 at 600 km separation (a perfect correlation would have a coefficient equal to 1.0.) There were no hours in the data set where wind speed was below the cut-in wind speed of a modern wind turbine throughout the United Kingdom, and low wind speed events affecting more than 90 percent of the United Kingdom had an average recurrent rate of only one hour per year.
  148. "Where does Britain get its gas from and why does Russia matter?". The Independent. 8 October 2021. Retrieved 14 October 2021.
  149. Andrew Michael (16 September 2021). "What you need to know about energy prices". MSN. Evening Standard. Retrieved 17 September 2021. Why are wholesale prices on the rise? Rising demand [...] Lack of wind
  150. Joe Wallace (13 September 2021). "Energy Prices in Europe Hit Records After Wind Stops Blowing". The Wall Street Journal. Retrieved 14 September 2021. U.K. wind farms produced less than one gigawatt on certain days, according to Mr. Konstantinov. Full capacity stands at 24 gigawatts
  151. 1 2 3 Lempriere, Molly (13 June 2022). "Current± Price Watch: Surging wind pushes power prices negative". Current+.
  152. "Transmission Constraint Agreement", nationalgrid.com, archived from the original on 12 December 2011, retrieved 1 April 2012
  153. Sources:
  154. "National Grid Monthly Balancing Services Summary (MBSS) Mar-2021" (PDF). National Grid ESO. p. 36.
  155. "Requirement for thermal generation to back-up wind capacity". Economic Affairs Committee. House of Lords. June 2008. Retrieved 13 February 2011.
  156. Harrabin, Roger (24 June 2009). "UK expands wind power potential". BBC News.
  157. National Grid report says it can handle variable wind power | Policy Archived 5 October 2011 at the Wayback Machine. Energy Efficiency News (22 June 2009).
  158. Andrew Ward (14 October 2016). "UK falls back on fossil fuels to secure winter energy supply". Financial Times. Archived from the original on 11 December 2022. Retrieved 10 December 2016.
  159. "Battery storage boost to power greener electricity grid". Department for Business, Energy & Industrial Strategy. 14 July 2020. Retrieved 1 February 2022 via gov.uk.
  160. McCorkindale, Mollie (19 May 2021). "Top ten UK battery storage projects forecast for 2021 completion". Solar Power Portal. Retrieved 1 February 2022.
  161. "Frequency response services | National Grid ESO". www.nationalgrideso.com. Retrieved 20 February 2020.
  162. "Wind Energy and the Environment" (PDF). Retrieved 17 January 2012.
  163. "A Summary of Opinion Surveys on Wind Power" (PDF). Retrieved 17 January 2012.
  164. "Public attitudes to wind farms". Eon-uk.com. 28 February 2008. Archived from the original on 14 March 2012. Retrieved 17 January 2012.
  165. "The Social Acceptance of Wind Energy". European Commission. Archived from the original on 28 March 2009.
  166. Simon Braunholtz (21 August 2003). "Public Attitudes to Windfarms" (PDF). Scottish Executive Social Research. Retrieved 27 March 2019.
  167. "Wind farms make good neighbours". Archived from the original on 15 February 2012.
  168. "Rise in Scots wind farm support". BBC News. 19 October 2010.
  169. "An investigation into the potential barriers facing the development of offshore wind energy in Scotland" (PDF). 7 March 2012.
  170. "Wind energy continues to blow away records". eaem.co.uk. Archived from the original on 25 September 2017. Retrieved 17 November 2015.
  171. 1 2 3 "Onshore wind farms cancelled as subsidies cut". BBC News. 22 June 2015.
  172. 1 2 Randall Hackley (14 April 2015). "Cameron's U.K. Conservatives Oppose Onshore Wind Farms". Bloomberg.com.
  173. "David Cameron says people are 'fed up' with onshore wind farms". BBC News. 16 December 2014.
  174. Drop in wind energy costs adds pressure for government rethink The Guardian
  175. "Tories face fight with Lords over onshore windfarm subsidies". The Guardian. 16 January 2016. Retrieved 15 January 2017.
  176. "Amber Rudd: 250 onshore wind farm projects 'unlikely' to be built". businessgreen.com. 23 June 2015.
  177. Ambrose, Jillian (16 March 2020). "Planning applications for UK clean energy projects hit new high". The Guardian. Retrieved 16 March 2020.
  178. "Press release – Biggest ever renewable energy support scheme opens". HM Government, Department for Business, Energy & Industrial Strategy. 13 December 2021. Retrieved 16 January 2022.
  179. "UK can be 'Saudi Arabia of wind power' – PM". Ethical Editor. 24 September 2020. Retrieved 24 September 2020.
  180. Paul Rincon (24 September 2020). "UK can be 'Saudi Arabia of wind power' – PM". BBC News. Retrieved 24 September 2020.
  181. "Wind records in Britain" Energy Numbers, 1 January 2015.
  182. "Record-setting Sunday: Wind supplies a quarter of UK power". edie.net. Retrieved 9 June 2015.
  183. "Wind farms outstrip nuclear power". BBC News. 22 October 2014. Retrieved 9 June 2015.
  184. RenewableUK. "RenewableUK – Press Releases – Record Breaking month for wind energy". renewableuk.com. Archived from the original on 27 December 2014. Retrieved 9 June 2015.
  185. "Record-breaker: British wind power output tops 10GW". 17 January 2018. Retrieved 3 February 2018.
  186. "UK sets new wind power record". The Independent. 17 March 2018. Retrieved 20 June 2018.
  187. "Drax Electric Insights". 21 December 2018. Retrieved 21 December 2018.
  188. "Drax Electric Insights". Drax Electric Insights. Retrieved 10 December 2019.
  189. "Electric Insights | Demand & price, Environment, Supply". Drax Electric Insights. Retrieved 10 December 2019.
  190. "Drax Electric Insights". Retrieved 16 December 2019.
  191. Davies, Rob; Ambrose, Jillian (28 December 2020). "Storm Bella helps Great Britain set new record for wind power generation". The Guardian. Retrieved 29 December 2020.
  192. Mitchinson, James, ed. (29 December 2020). "Weather warning with more snow forecast". The Yorkshire Post. p. 1. ISSN 0963-1496.
  193. "Record-breaking 2020 becomes greenest year for Britain's electricity | National Grid ESO".
  194. Dyke, Craig (8 June 2022). "Great Britain's monthly electricity stats". National Grid ESO. Retrieved 17 June 2022.
  195. "UK wind power generation reaches over 20 GW for first time". Proactiveinvestors UK. 4 November 2022. Retrieved 11 January 2023.
  196. "The Wind Record Has Been Broken Again!". Twitter. National Grid UK. Retrieved 11 January 2023.
  197. "500 wind turbine blades lined up in Hull as huge windfarm generates first power". ITV News. 15 February 2019.
  198. 100 jobs lost as wind farm factory is mothballed, 16 October 2014
  199. "Major boost to far north economy as Nigg is awarded Beatrice contract – and Helmsdale may benefit too". northern-times.co.uk. Archived from the original on 20 December 2016. Retrieved 28 June 2016.
  200. Foxwell, David (29 September 2021). "Record year sees more than £900M invested in UK offshore wind manufacturing". Riviera.
  201. "UK Offshore Wind Sector Expected to Employ Almost 100,000 People by 2030". Offshore Wind. 13 June 2022.
  202. "Energy Trends: renewables – GOV.UK". gov.uk. Retrieved 3 February 2018.
  203. "Whitelee Wind Farm website". Archived from the original on 27 November 2011. Retrieved 3 February 2018.
  204. "Clyde". sse.com. Archived from the original on 30 October 2012. Retrieved 3 February 2018.
  205. "Robin Rigg East and West – Offshore – E.ON". eonenergy.com. Retrieved 3 February 2018.
  206. "Current Marine Renewable Energy Projects". gov.scot. Scottish Government. 8 December 2009. Archived from the original on 15 July 2015. Retrieved 3 February 2018.
  207. "Rise in Scots wind farm support". BBC News. 18 October 2010.
  208. Scottish Government (2003). "Public Attitudes to Windfarms: A Survey of Local Residents in Scotland".
  209. Scottish Renewables (22 October 2010). "Scots support wind farms". Sustainable Scotland. Archived from the original on 19 January 2013.
  210. "Renewables met 97% of Scotland's electricity demand in 2020". BBC News. 25 March 2021. Retrieved 31 March 2021.
  211. Harrabin, Roger (23 July 2017). "World's first floating wind farm emerges off coast of Scotland". BBC News. Retrieved 23 July 2017.
  212. "Equinor and ORE Catapult collaborating to share Hywind Scotland operational data". equinor.com.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.