6-cube

Rectified 6-cube

Birectified 6-cube

Birectified 6-orthoplex

Rectified 6-orthoplex

6-orthoplex
Orthogonal projections in A6 Coxeter plane

In six-dimensional geometry, a rectified 6-cube is a convex uniform 6-polytope, being a rectification of the regular 6-cube.

There are unique 6 degrees of rectifications, the zeroth being the 6-cube, and the 6th and last being the 6-orthoplex. Vertices of the rectified 6-cube are located at the edge-centers of the 6-cube. Vertices of the birectified 6-cube are located in the square face centers of the 6-cube.

Rectified 6-cube

Rectified 6-cube
Typeuniform 6-polytope
Schläfli symbolt1{4,34} or r{4,34}
Coxeter-Dynkin diagrams =
5-faces76
4-faces444
Cells1120
Faces1520
Edges960
Vertices192
Vertex figure5-cell prism
Petrie polygonDodecagon
Coxeter groupsB6, [3,3,3,3,4]
D6, [33,1,1]
Propertiesconvex

Alternate names

  • Rectified hexeract (acronym: rax) (Jonathan Bowers)

Construction

The rectified 6-cube may be constructed from the 6-cube by truncating its vertices at the midpoints of its edges.

Coordinates

The Cartesian coordinates of the vertices of the rectified 6-cube with edge length 2 are all permutations of:

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

Birectified 6-cube

Birectified 6-cube
Typeuniform 6-polytope
Coxeter symbol0311
Schläfli symbolt2{4,34} or 2r{4,34}
Coxeter-Dynkin diagrams =
=
5-faces76
4-faces636
Cells2080
Faces3200
Edges1920
Vertices240
Vertex figure{4}x{3,3} duoprism
Coxeter groupsB6, [3,3,3,3,4]
D6, [33,1,1]
Propertiesconvex

Alternate names

  • Birectified hexeract (acronym: brox) (Jonathan Bowers)
  • Rectified 6-demicube

Construction

The birectified 6-cube may be constructed from the 6-cube by truncating its vertices at the midpoints of its edges.

Coordinates

The Cartesian coordinates of the vertices of the rectified 6-cube with edge length 2 are all permutations of:

Images

orthographic projections
Coxeter plane B6 B5 B4
Graph
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph
Dihedral symmetry [6] [4]

These polytopes are part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

B6 polytopes

β6

t1β6

t2β6

t2γ6

t1γ6

γ6

t0,1β6

t0,2β6

t1,2β6

t0,3β6

t1,3β6

t2,3γ6

t0,4β6

t1,4γ6

t1,3γ6

t1,2γ6

t0,5γ6

t0,4γ6

t0,3γ6

t0,2γ6

t0,1γ6

t0,1,2β6

t0,1,3β6

t0,2,3β6

t1,2,3β6

t0,1,4β6

t0,2,4β6

t1,2,4β6

t0,3,4β6

t1,2,4γ6

t1,2,3γ6

t0,1,5β6

t0,2,5β6

t0,3,4γ6

t0,2,5γ6

t0,2,4γ6

t0,2,3γ6

t0,1,5γ6

t0,1,4γ6

t0,1,3γ6

t0,1,2γ6

t0,1,2,3β6

t0,1,2,4β6

t0,1,3,4β6

t0,2,3,4β6

t1,2,3,4γ6

t0,1,2,5β6

t0,1,3,5β6

t0,2,3,5γ6

t0,2,3,4γ6

t0,1,4,5γ6

t0,1,3,5γ6

t0,1,3,4γ6

t0,1,2,5γ6

t0,1,2,4γ6

t0,1,2,3γ6

t0,1,2,3,4β6

t0,1,2,3,5β6

t0,1,2,4,5β6

t0,1,2,4,5γ6

t0,1,2,3,5γ6

t0,1,2,3,4γ6

t0,1,2,3,4,5γ6

Notes

    References

    • H.S.M. Coxeter:
      • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
      • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
        • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
        • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
        • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
    • Norman Johnson Uniform Polytopes, Manuscript (1991)
      • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
    • Klitzing, Richard. "6D uniform polytopes (polypeta)". o3x3o3o3o4o - rax, o3o3x3o3o4o - brox,
    Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
    Regular polygon Triangle Square p-gon Hexagon Pentagon
    Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
    Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
    Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
    Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
    Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
    Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
    Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
    Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
    Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
    Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.