Quasielastic neutron scattering (QENS) designates a limiting case of inelastic neutron scattering, characterized by energy transfers being small compared to the incident energy of the scattered particles. In a more strict meaning, it denotes scattering processes where dynamics in the sample (such as diffusive dynamics) lead to a broadening of the incident neutron spectrum, in contrast to, e.g., the scattering from a diffusionless crystal, where the scattered neutron energy spectrum consists of an elastic line (corresponding to no energy transfer with the sample) and a number of well-separated inelastic lines due to the creation or annihilation of phonons with specific energies.

The term quasielastic scattering was originally coined in nuclear physics. It was applied to thermal neutron scattering since the early 1960s, notably in an article by Leon van Hove[1] and in a highly cited one by Pierre Gilles de Gennes.[2]

QENS is typically investigated on high-resolution spectrometers (neutron backscattering, neutron time-of-flight scattering, neutron spin echo).

It is used to investigate topics like

Conference Series

Starting in 1992, there is a conference series entitled QENS. Since 2012, it is being held together with the Workshop on Inelastic Neutron Spectrometry (WINS).

YearVenueOrganizing CentreProceedingsEditor
1992Windsor, UKISIS ?
1993San Sebastian, Spainuniversity ?
1995Parma, Italyuniversity ?
1998Nyköping, SwedenStudsvik research reactorPhysica B 266 (1-2) pp. 1–138
2000Edinburgh, UKuniversityPhysica B 301 (1-2) pp. 1–168V. Arrighi and M.T.F. Telling
2002Potsdam/Berlin, GermanyHahn-Meitner-InstitutChemical Physics 292 (2-3) pp. 119–534R.E.Lechner
2004Arcachon, France ?
2006Bloomington, USALow Energy Neutron Source, Indiana University Cyclotron FacilityMRS Conference SeriesP.E. Sokol et al.
2009Villigen, SwitzerlandPaul-Scherrer-InstitutZ. Phys. Chem. 224 (1-2) pp. 1–287R. Hempelmann et al.
2012Nikkō, Tochigi, JapanJ-PARCJ. Phys. Soc. Japan 82 Suppl. A (2013)O. Yamamuro et al.
2014Autrans, FranceInstitut Laue-LangevinEPJ Web of Conferences Vol. 83 (2015)B. Frick, M.M. Koza, M. Boehm, and H. Mutka
2016Berlin, GermanyHelmholtz-Zentrum BerlinM. Russina et al.

Textbooks

  • M. Beé, Quasielastic Neutron Scattering, Adam Hilger: Bristol (1988).
  • R. Hempelmann, Quasielastic Neutron Scattering and Solid State Diffusion, Clarendon Press: Oxford (2000).

References

  1. Van Hove, L.; McVoy, K.W. (1962). "Pair distribution functions and scattering phenomena". Nuclear Physics. Elsevier BV. 33: 468–476. doi:10.1016/0029-5582(62)90539-4. ISSN 0029-5582.
  2. de Gennes, P.G. (1963). "Collective motions of hydrogen bonds". Solid State Communications. Elsevier BV. 1 (6): 132–137. doi:10.1016/0038-1098(63)90212-6. ISSN 0038-1098.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.