In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.[1][2][3]

List of invariants

See also

References

  1. Reshetikhin, N. & Turaev, V. (1991). "Invariants of 3-manifolds via link polynomials and quantum groups". Invent. Math. 103 (1): 547. Bibcode:1991InMat.103..547R. doi:10.1007/BF01239527. S2CID 123376541.
  2. Kontsevich, Maxim (1993). "Vassiliev's knot invariants". Adv. Soviet Math. 16: 137.
  3. Watanabe, Tadayuki (2007). "Knotted trivalent graphs and construction of the LMO invariant from triangulations". Osaka J. Math. 44 (2): 351. Retrieved 4 December 2012.
  4. Letzter, Gail (2004). "Invariant differential operators for quantum symmetric spaces, II". arXiv:math/0406194.
  5. Sawon, Justin (2000). "Topological quantum field theory and hyperkähler geometry". arXiv:math/0009222.
  6. "Data" (PDF). hal.archives-ouvertes.fr. 1999. Retrieved 2019-11-04.
  7. "Archived copy" (PDF). knot.kaist.ac.kr. Archived from the original (PDF) on 20 July 2007. Retrieved 13 January 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  8. "Invariants of 3-manifolds via link polynomials and quantum groups - Springer". doi:10.1007/BF01239527. S2CID 123376541. {{cite journal}}: Cite journal requires |journal= (help)

Further reading

  • Freedman, Michael H. (1990). Topology of 4-manifolds. Princeton, N.J: Princeton University Press. ISBN 978-0691085777. OL 2220094M.
  • Ohtsuki, Tomotada (December 2001). Quantum Invariants. World Scientific Publishing Company. ISBN 9789810246754. OL 9195378M.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.