Natural hydrogen (known as white hydrogen or gold hydrogen), is hydrogen that is formed by natural process[1][2] (as opposed to hydrogen produced in a laboratory or in industry). By contrast green hydrogen is produced from renewable energy sources, while grey, brown or black hydrogen are obtained from fossil fuels.[3] White hydrogen may be renewable. It is non-polluting and offers lower costs than industrial hydrogen.[4] Natural hydrogen has been identified in many source rocks in areas beyond the sedimentary basins where oil companies typically operate.[5][6]

Origins

Sources of natural hydrogen include:[7]

Reserves

Reserves have been identified in France.[9] In 2023 Pironon and de Donato announced the discovery of a deposit they estimated to be some 46 million to 260 million metric tons (several years worth of 2020s production).[10]

Prinzhofer and Derville demonstrated the existence of large reservoirs in a dozen countries, including Mali and the United States.[11] However, their potential remains unassessed.[12]

Emanations on the ocean floor have been identified but remain unexploited. A discovery in Russia in 2008 suggests the possibility of extracting native hydrogen in geological environments.

A large accumulation of natural hydrogen was discovered in a water well in Bourakebougou, Mali that was exploited to power the nearby village.[10]

Mid-continent Rift System

White hydrogen could be found or produced in the Mid-continental Rift System at scale. Water could be pumped down to hot iron-rich rock to produce hydrogen for extraction.[13]

Geology

Natural hydrogen is generated from various sources. Many hydrogen emergences have been identified on mid-ocean ridges.[14] Serpentinisation occurs in the oceanic crust.

Diagenetic origin (iron oxidation) in the sedimentary basins of cratons, notably are found in Russia.

Mantle hydrogen and hydrogen from radiolysis (natural electrolysis) or from bacterial activity are under investigation. In France, the Alps and Pyrenees are suitable for exploitation.[15] New Caledonia has hyperalkaline sources that show dihydrogen emissions.[16]

Dihydrogen is soluble in fresh water, especially at depth (solubility increases with pressure).

Literature

Vladimir Vernadsky originated the concept of natural hydrogen captured by the Earth in the process of formation from the post-nebula cloud. Cosmogonical aspects were anticipated by Fred Hoyle. From 1960-2010, V.N. Larin developed the Primordially Hydridic Earth concept[17] that described deep-seated natural hydrogen prominence[18] and migration paths.

See also

References

  1. Larin V.N. 1975 Hydridic Earth: The New Geology of Our Primordially Hydrogen-Rich Planet (Moscow: Izd. IMGRE). (in Russian)
  2. Truche, Laurent; Bazarkina, Elena F. (2019). "Natural hydrogen the fuel of the 21 st century". E3S Web of Conferences. 98: 03006. Bibcode:2019E3SWC..9803006T. doi:10.1051/e3sconf/20199803006. S2CID 195544603.
  3. "Hydrogen color code". H2B.
  4. La rédaction: Hydrogène naturel : une source potentielle d'énergie renouvelable. In: La Revue des Transitions. 7 November 2019, retrieved 17 January 2022 (in French).
  5. Deville, Eric; Prinzhofer, Alain (November 2016). "The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia". Chemical Geology. 440: 139–147. Bibcode:2016ChGeo.440..139D. doi:10.1016/j.chemgeo.2016.06.011.
  6. Gregory Paita, Master Thesis, Engie & Université de Montpellier.
  7. Zgonnik, P. Malbrunot: L'Hydrogene Naturel. Hrsg.: AFHYPAC Association française pour l'hydrogène et les piles à combustible. August 2020, S. 8 p., p. 5 (in French).
  8. "Our Earth". V. N. Larin, Agar, 2005 (in Russian)
  9. Paddison, Laura (2023-10-29). "They went hunting for fossil fuels. What they found could help save the world". CNN. Retrieved 2023-10-29.
  10. 1 2 Alderman, Liz (December 4, 2023). "It Could Be a Vast Source of Clean Energy, Buried Deep Underground". New York Times.
  11. Prinzhofer, Alain; Moretti, Isabelle; Françolin, Joao; Pacheco, Cleuton; D'Agostino, Angélique; Werly, Julien; Rupin, Fabian (March 2019). "Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure" (PDF). International Journal of Hydrogen Energy. 44 (12): 5676–5685. doi:10.1016/j.ijhydene.2019.01.119. S2CID 104328822.
  12. Larin, Nikolay; Zgonnik, Viacheslav; Rodina, Svetlana; Deville, Eric; Prinzhofer, Alain; Larin, Vladimir N. (September 2015). "Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia". Natural Resources Research. 24 (3): 369–383. doi:10.1007/s11053-014-9257-5. S2CID 128762620.
  13. "The Potential for Geologic Hydrogen for Next-Generation Energy | U.S. Geological Survey". www.usgs.gov.
  14. L'hydrogène dans une économie décarbonée (connaissancedesenergies.org)
  15. Gaucher, Éric C. (June 2020). "Une découverte d'hydrogène naturel dans les Pyrénées-Atlantiques, première étape vers une exploration industrielle" [A natural hydrogen discovery in the Pyrénées-Atlantiques region, the first step towards industrial exploration]. Géologues, Société géologique de France (in French) (213). Retrieved May 2, 2023.
  16. Prinzhofer, Alain; Tahara Cissé, Cheick Sidy; Diallo, Aliou Boubacar (October 2018). "Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali)". International Journal of Hydrogen Energy. 43 (42): 19315–19326. doi:10.1016/j.ijhydene.2018.08.193. S2CID 105839304.
  17. V.N. Larin (1993). Hydridic Earth, Polar Publishing, Calgary, Alberta. https://archive.org/details/Hydridic_Earth_Larin_1993
  18. Our Earth. V.N. Larin, Agar, 2005 (rus.) https://archive.org/details/B-001-026-834-PDF-060

Bibliography

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.