Metallization pressure is the pressure required for a non-metallic chemical element to become a metal. Every material is predicted to turn into a metal if the pressure is high enough, and temperature low enough. Some of these pressures are beyond the reach of diamond anvil cells, and are thus theoretical predictions. Neon has the highest metallization pressure for any element.
The value for phosphorus refers to pressurizing black phosphorus. The value for arsenic refers to pressurizing metastable black arsenic; grey arsenic, the standard state, is already a metallic conductor at standard conditions. No value is known or theoretically predicted for radon.
Z | Element | p, Mbar | ref. | type |
---|---|---|---|---|
1 | hydrogen | 3.9 | [1] | theoretical |
2 | helium | 329 | [2] | theoretical |
5 | boron | 1.6 | [3][4] | experimental |
6 | carbon | 11 | [5] | theoretical |
7 | nitrogen | >> 5 | [6] | theoretical |
8 | oxygen | 0.96 | [7][8] | experimental |
9 | fluorine | 25 | [9] | theoretical |
10 | neon | 2084 | [10] | theoretical |
14 | silicon | 0.12 | [11] | experimental |
15 | phosphorus | 0.048 | [12] | experimental |
16 | sulfur | 0.83 | [13] | experimental |
17 | chlorine | 2.0 | [14] | experimental |
18 | argon | 5.1 | [15] | theoretical |
32 | germanium | 0.11 | [16] | experimental |
33 | arsenic | 0.022 | [17] | theoretical |
34 | selenium | 0.23 | [18] | experimental |
35 | bromine | 0.25 | [19] | experimental |
36 | krypton | 3.1 | [15][20] | theoretical |
52 | tellurium | 0.04 | [21] | experimental |
53 | iodine | 0.16 | [22] | experimental |
54 | xenon | 1.3 | [23] | experimental |
86 | radon | . | . | . |
See also
References
- ↑ McMinis, Jeremy; Clay, Raymond C.; Lee, Donghwa; Morales, Miguel A. (2015). "Molecular to Atomic Phase Transition in Hydrogen under High Pressure". Physical Review Letters. 114 (10): 105305. Bibcode:2015PhRvL.114j5305M. doi:10.1103/PhysRevLett.114.105305. PMID 25815944.
- ↑ Monserrat, Bartomeu; Drummond, N. D.; Pickard, Chris J.; Needs, R. J. (2014). "Electron-Phonon Coupling and the Metallization of Solid Helium at Terapascal Pressures". Physical Review Letters. 112 (5): 055504. arXiv:1311.1005. Bibcode:2014PhRvL.112e5504M. doi:10.1103/PhysRevLett.112.055504. PMID 24580611. S2CID 29848984.
- ↑ Eremets, M. I.; Struzhkin, V. V.; Mao, H.; Hemley, R. J. (2001). "Superconductivity in boron". Science. 293 (5528): 272–274. doi:10.1126/science.1062286.
- ↑ Zhao, Jijun; Lu, Jian Ping (2002). "Pressure-induced metallization in solid boron". Physical Review B. 66 (9): 092101. arXiv:cond-mat/0109550. Bibcode:2002PhRvB..66i2101Z. doi:10.1103/PhysRevB.66.092101. S2CID 119426107.
- ↑ Correa, Alfredo A.; Bonev, Stanimir A.; Galli, Giulia (2006). "Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory". Proceedings of the National Academy of Sciences of the United States of America. 103 (5): 1204–1208. Bibcode:2006PNAS..103.1204C. doi:10.1073/pnas.0510489103. ISSN 0027-8424. PMC 1345714. PMID 16432191.
- ↑ Ma, Yanming; Oganov, Artem R.; Li, Zhenwei; Xie, Yu; Kotakoski, Jani (2009). "Novel High Pressure Structures of Polymeric Nitrogen". Physical Review Letters. 102 (6): 065501. Bibcode:2009PhRvL.102f5501M. doi:10.1103/PhysRevLett.102.065501. PMID 19257600.
- ↑ Akahama, Yuichi; Kawamura, Haruki; Häusermann, Daniel; Hanfland, Michael; Shimomura, Osamu (June 1995). "New High-Pressure Structural Transition of Oxygen at 96 GPa Associated with Metallization in a Molecular Solid". Physical Review Letters. 74 (23): 4690–4694. Bibcode:1995PhRvL..74.4690A. doi:10.1103/PhysRevLett.74.4690. PMID 10058574.
- ↑ Elatresh, Sabri F.; Bonev, Stanimir A. (2020). "Stability and metallization of solid oxygen at high pressure". Physical Chemistry Chemical Physics. 22 (22): 12577–12583. Bibcode:2020PCCP...2212577E. doi:10.1039/C9CP05267D. OSTI 1860780. PMID 32452471. S2CID 218891958.
- ↑ Olson, Mark A.; Bhatia, Shefali; Larson, Paul; Militzer, Burkhard (2020). "Prediction of chlorine and fluorine crystal structures at high pressure using symmetry driven structure search with geometric constraints". The Journal of Chemical Physics. 153 (9): 094111. arXiv:2008.04471. doi:10.1063/5.0018402. PMID 32891084. S2CID 221095681. Retrieved 13 December 2022.
- ↑ Tang, Jun; Ao, Bingyun; Huang, Li; Ye, Xiaoqiu; Gu, Yunjun; Chen, Qifeng (2019). "Metallization and positive pressure dependency of bandgap in solid neon". The Journal of Chemical Physics. 150 (11): 111103. Bibcode:2019JChPh.150k1103T. doi:10.1063/1.5089489. PMID 30901987.
- ↑ Hu, Jing Zhu; Merkle, Larry D.; Menoni, Carmen S.; Spain, Ian L. (1986). "Crystal data for high-pressure phases of silicon". Physical Review B. 34 (7): 4679–4684. Bibcode:1986PhRvB..34.4679H. doi:10.1103/PhysRevB.34.4679. hdl:10217/634. PMID 9940261.
- ↑ Okajima, Michio; Endo, Shoichi; Akahama, Yuichi; Narita, Shin-ichiro (1984). "Electrical Investigation of Phase Transition in Black Phosphorus under High Pressure". Japanese Journal of Applied Physics. 23 (1): 15–19. Bibcode:1984JaJAP..23...15O. doi:10.1143/JJAP.23.15. S2CID 121615032.
- ↑ Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Pressure-induced structural phase transition in sulfur at 83 GPa". Physical Review B. 48 (10): 6862–6864. Bibcode:1993PhRvB..48.6862A. doi:10.1103/PhysRevB.48.6862. PMID 10006849.
- ↑ Dalladay-Simpson, Philip; Binns, Jack; Peña-Alvarez, Miriam; Donnelly, Mary-Ellen; Greenberg, Eran; Prakapenka, Vitali; Chen, Xiao-Jia; Gregoryanz, Eugene; Howie, Ross T. (8 March 2019). "Band gap closure, incommensurability and molecular dissociation of dense chlorine". Nature Communications. 10 (1): 1134. Bibcode:2019NatCo..10.1134D. doi:10.1038/s41467-019-09108-x. ISSN 2041-1723. PMC 6408506. PMID 30850606.
- 1 2 Kwon, I.; Collins, L.A.; Kress, J.D.; Troullier, N. (1995). "First-principles study of solid Ar and Kr under high compression". Physical Review B. 52 (21): 15165–15169. Bibcode:1995PhRvB..5215165K. doi:10.1103/PhysRevB.52.15165. PMID 9980870.
- ↑ Vohra, Yogesh K.; Brister, Keith E.; Desgreniers, Serge; Ruoff, Arthur L.; Chang, K. J.; Cohen, Marvin L. (1986). "Phase-Transition Studies of Germanium to 1.25 Mbar". Physical Review Letters. 56 (18): 1944–1947. Bibcode:1986PhRvL..56.1944V. doi:10.1103/PhysRevLett.56.1944. PMID 10032817.
- ↑ Li, Ruiping; Han, Nannan; Cheng, Yingchun; Huang, Wei (2019). "Pressure-induced metallization of black arsenic". Journal of Physics: Condensed Matter. 31 (50): 505501. Bibcode:2019JPCM...31X5501L. doi:10.1088/1361-648X/ab3f76. PMID 31469104. S2CID 201673605.
- ↑ Akahama, Y.; Kobayashi, M.; Kawamura, H. (1993). "Structural studies of pressure-induced phase transitions in selenium up to 150 GPa". Physical Review B. 47 (1): 20–26. Bibcode:1993PhRvB..47...20A. doi:10.1103/PhysRevB.47.20. PMID 10004412.
- ↑ San Miguel, A.; Libotte, H.; Gaspard, J.P.; Gauthier, M.; Itié, J.P.; Polian, A. (2000). "Bromine metallization studied by X-ray absorption spectroscopy". The European Physical Journal B. 17 (2): 227–233. Bibcode:2000EPJB...17..227S. doi:10.1007/s100510070136. S2CID 123571031.
- ↑ Hama, Juichiro; Suito, Kaichi (1989). "Equation of state and metallization in compressed solid krypton". Physics Letters A. 140 (3): 117–121. Bibcode:1989PhLA..140..117H. doi:10.1016/0375-9601(89)90503-3.
- ↑ Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. (2012). "High-pressure phases of crystalline tellurium: A combined Raman and ab initio study". Physical Review B. 86 (6): 064103. Bibcode:2012PhRvB..86f4103M. doi:10.1103/PhysRevB.86.064103.
- ↑ Pasternak, M.; Farrell, J. N.; Taylor, R. D. (1987). "Metallization and structural transformation of iodine under pressure: A microscopic view". Physical Review Letters. 58 (6): 575–578. Bibcode:1987PhRvL..58..575P. doi:10.1103/physrevlett.58.575. PMID 10034976.
- ↑ Eremets, Mikhail; Gregoryanz, Eugene; Struzhkin, Victor; Mao, Ho-Kwang; Hemley, Russell; Mulders, Norbert; Zimmerman, Neil (2000). "Electrical Conductivity of Xenon at Megabar Pressures". Physical Review Letters. 85 (13): 2797–2800. Bibcode:2000PhRvL..85.2797E. doi:10.1103/PhysRevLett.85.2797. PMID 10991236.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.