In mathematics, in the field of general topology, a topological space is said to be mesocompact if every open cover has a compact-finite open refinement.[1] That is, given any open cover, we can find an open refinement with the property that every compact set meets only finitely many members of the refinement.[2]
The following facts are true about mesocompactness:
- Every compact space, and more generally every paracompact space is mesocompact. This follows from the fact that any locally finite cover is automatically compact-finite.
- Every mesocompact space is metacompact, and hence also orthocompact. This follows from the fact that points are compact, and hence any compact-finite cover is automatically point finite.
Notes
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.