In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle YX and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of YX.

In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis . In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.

Lagrangians and Euler–Lagrange operators

A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold JrY of Y.

A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O(Y) of exterior forms on jet manifolds of YX. The coboundary operator of this bicomplex contains the variational operator δ which, acting on L, defines the associated Euler–Lagrange operator δL.

In coordinates

Given bundle coordinates xλ, yi on a fiber bundle Y and the adapted coordinates xλ, yi, yiΛ, (Λ = (λ1, ...,λk), |Λ| = kr) on jet manifolds JrY, a Lagrangian L and its Euler–Lagrange operator read

where

denote the total derivatives.

For instance, a first-order Lagrangian and its second-order Euler–Lagrange operator take the form

Euler–Lagrange equations

The kernel of an Euler–Lagrange operator provides the Euler–Lagrange equations δL = 0.

Cohomology and Noether's theorems

Cohomology of the variational bicomplex leads to the so-called variational formula

where

is the total differential and θL is a Lepage equivalent of L. Noether's first theorem and Noether's second theorem are corollaries of this variational formula.

Graded manifolds

Extended to graded manifolds, the variational bicomplex provides description of graded Lagrangian systems of even and odd variables.[1]

Alternative formulations

In a different way, Lagrangians, Euler–Lagrange operators and Euler–Lagrange equations are introduced in the framework of the calculus of variations.

Classical mechanics

In classical mechanics equations of motion are first and second order differential equations on a manifold M or various fiber bundles Q over . A solution of the equations of motion is called a motion.[2][3]

See also

References

  • Arnold, V. I. (1989), Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60 (second ed.), Springer-Verlag, ISBN 0-387-96890-3
  • Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (1997). New Lagrangian and Hamiltonian Methods in Field Theory. World Scientific. ISBN 981-02-1587-8.
  • Giachetta, G.; Mangiarotti, L.; Sardanashvily, G. (2011). Geometric formulation of classical and quantum mechanics. World Scientific. doi:10.1142/7816. hdl:11581/203967. ISBN 978-981-4313-72-8.
  • Olver, P. (1993). Applications of Lie Groups to Differential Equations (2 ed.). Springer-Verlag. ISBN 0-387-94007-3.
  • Sardanashvily, G. (2013). "Graded Lagrangian formalism". Int. J. Geom. Methods Mod. Phys. World Scientific. 10 (5): 1350016. arXiv:1206.2508. doi:10.1142/S0219887813500163. ISSN 0219-8878.
  • Sardanashvily, G. (2009). "Fibre Bundles, Jet Manifolds and Lagrangian Theory. Lectures for Theoreticians". arXiv:0908.1886. Bibcode:2009arXiv0908.1886S. {{cite journal}}: Cite journal requires |journal= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.