Isopropylmagnesium chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.680
EC Number
  • 213-947-1
UNII
  • InChI=1S/C3H7.ClH.Mg/c1-3-2;;/h3H,1-2H3;1H;/q-1;;+2/p-1
    Key: IUYHWZFSGMZEOG-UHFFFAOYSA-M
  • C[CH-]C.[Mg+2].[Cl-]
Properties
C3H7ClMg
Molar mass 102.84 g·mol−1
Solubility Ethyl ether
Hazards
GHS labelling:
GHS02: FlammableGHS05: Corrosive
Danger
H225, H260, H314
P210, P223, P231+P232, P233, P240, P241, P242, P243, P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P335+P334, P363, P370+P378, P402+P404, P403+P235, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Isopropylmagnesium chloride is an organometallic compound with the general formula (CH3)2HCMgCl. This highly flammable, colorless, and moisture sensitive material is the Grignard reagent derived from isopropyl chloride. It is commercially available, usually as a solution in tetrahydrofuran.

Synthesis

Solutions of isopropylmagnesium chloride can be formed by refluxing isopropyl chloride with magnesium metal in ethereal solvents:[1]

(CH3)2HCCl + Mg → (CH3)2HCMgCl

Reactivity

This reagent is used to prepare Grignard reagents by transmetalation reactions as well as installing isopropyl groups.[2] An illustrative generic reaction involves the generation of the Grignard reagent derived from bromo-3,5-bis(trifluoromethyl)benzene:[3]

(CH3)2HCMgCl + (CF3)2C6H3Br → (CH3)2HCCl + (CF3)2C6H3MgBr

Addition of one equivalent of LiCl to isopropylmagnesium chloride results in the formation of "Turbo Grignard" solutions, named so due to the increased rate and efficiency for transmetallation reactions.[4][5]

Isopropylmagnesium chloride is also used to prepare other isopropyl compounds, such as chlorodiisopropylphosphine:[6]

PCl3 + 2 (CH3)2CHMgCl → [(CH3)2CH]2PCl + 2 MgCl2

This reaction exploits the bulky nature of the isopropyl substituent.

References

  1. Seyferth, Dietmar (2009-03-23). "The Grignard Reagents". Organometallics. 28 (6): 1598–1605. doi:10.1021/om900088z. ISSN 0276-7333.
  2. Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. (2003). "Highly Functionalized Organomagnesium Reagents Prepared through Halogen–Metal Exchange". Angewandte Chemie International Edition. 42 (36): 4302–4320. doi:10.1002/anie.200300579. PMID 14502700.
  3. Johnnie L. Leazer Jr; Raymond Cvetovich (2005). "A Practical and Safe Preparation of 3,5-Bis(trifluoromethyl)acetophenone". Org. Synth. 82: 115. doi:10.15227/orgsyn.082.0115.
  4. Krasovskiy, Arkady; Knochel, Paul (2004-06-21). "A LiCl‐Mediated Br/Mg Exchange Reaction for the Preparation of Functionalized Aryl‐ and Heteroarylmagnesium Compounds from Organic Bromides". Angewandte Chemie International Edition. 43 (25): 3333–3336. doi:10.1002/anie.200454084. ISSN 1433-7851.
  5. Hermann, Andreas; Seymen, Rana; Brieger, Lukas; Kleinheider, Johannes; Grabe, Bastian; Hiller, Wolf; Strohmann, Carsten (2023-06-19). "Comprehensive Study of the Enhanced Reactivity of Turbo‐Grignard Reagents**". Angewandte Chemie International Edition. 62 (25). doi:10.1002/anie.202302489. ISSN 1433-7851.
  6. W. Voskuil; J. F. Arens (1968). "Chlorodiisopropylphosphine". Org. Synth. 48: 47. doi:10.15227/orgsyn.048.0047.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.