In numerical linear algebra, the conjugate gradient squared method (CGS) is an iterative algorithm for solving systems of linear equations of the form , particularly in cases where computing the transpose is impractical.[1] The CGS method was developed as an improvement to the biconjugate gradient method.[2][3][4]

Background

A system of linear equations consists of a known matrix and a known vector . To solve the system is to find the value of the unknown vector .[3][5] A direct method for solving a system of linear equations is to take the inverse of the matrix , then calculate . However, computing the inverse is computationally expensive. Hence, iterative methods are commonly used. Iterative methods begin with a guess , and on each iteration the guess is improved. Once the difference between successive guesses is sufficiently small, the method has converged to a solution.[6][7]

As with the conjugate gradient method, biconjugate gradient method, and similar iterative methods for solving systems of linear equations, the CGS method can be used to find solutions to multi-variable optimisation problems, such as power-flow analysis, hyperparameter optimisation, and facial recognition.[8]

Algorithm

The algorithm is as follows:[9]

  1. Choose an initial guess
  2. Compute the residual
  3. Choose
  4. For do:
    1. If , the method fails.
    2. If :
    3. Else:
    4. Solve , where is a pre-conditioner.
    5. Solve
    6. Check for convergence: if there is convergence, end the loop and return the result

See Also

References

  1. Noel Black; Shirley Moore. "Conjugate Gradient Squared Method". Wolfram Mathworld.
  2. Mathworks. "cgs". Matlab documentation.
  3. 1 2 Henk van der Vorst (2003). "Bi-Conjugate Gradients". Iterative Krylov Methods for Large Linear Systems. Cambridge University Press. ISBN 0-521-81828-1.
  4. Peter Sonneveld (1989). "CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems". SIAM Journal on Scientific and Statistical Computing. 10 (1): 36–52. doi:10.1137/0910004. ProQuest 921988114.
  5. "Linear equations" (PDF), Matrix Analysis and Applied Linear Algebra (PDF), 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688: SIAM, pp. 1–40, doi:10.1137/1.9780898719512.ch1 (PDF), retrieved 2023-12-18 {{citation}}: Check |archive-url= value (help)CS1 maint: location (link) CS1 maint: url-status (link)
  6. "Iterative Methods for Linear Systems". Mathworks.
  7. Jean Gallier. "Iterative Methods for Solving Linear Systems" (PDF). UPenn.
  8. Alexandra Roberts; Anye Shi; Yue Sun. "Conjugate gradient methods". Cornell University. Retrieved 2023-12-26.
  9. R. Barrett; M. Berry; T. F. Chan; J. Demmel; J. Donato; J. Dongarra; V. Eijkhout; R. Pozo; C. Romine; H. Van der Vorst (1994). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition. SIAM.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.