Catatumbo lightning at night

Catatumbo lightning (Spanish: Relámpago del Catatumbo)[1] is an atmospheric phenomenon that occurs over the mouth of the Catatumbo River where it empties into Lake Maracaibo in Venezuela. Catatumbo means "House of Thunder" in the language of the Bari people.[2] It originates from a mass of storm clouds at an altitude of more than 1 km (0.6 mi), and occurs for 140 to 160 nights a year, nine hours per day, and with lightning flashes from 16 to 40 times per minute.[3] It occurs over and around Lake Maracaibo, typically over a bog area formed where the Catatumbo River flows into the lake.[4] The phenomenon sees the highest density of lightning in the world, at 250 per km2.[5] In summers, the phenomenon may even occur as dry lightning without rainfall.[6]

The lightning changes its flash frequency throughout the year, and it is different from year to year. For example, it ceased from January to March 2010, apparently due to drought, leading to speculation that it might have been extinguished permanently.[7][3][8]

Location and mechanism

Catatumbo lightning occurs over and around Lake Maracaibo

Catatumbo lightning usually develops between 8°30′N 71°0′W / 8.500°N 71.000°W / 8.500; -71.000 (Approximate outer limit) and 9°45′N 73°0′W / 9.750°N 73.000°W / 9.750; -73.000 (Approximate outer limit), toward the west of Lake Maracaibo. The storms are thought to be the result of winds blowing across the lake and the surrounding swampy plains. These air masses meet the high mountain ridges of the Andes, the Perijá Mountains (3,750 m (12,000 ft)), and Mérida's Cordillera, enclosing the plain from three sides. The heat and moisture collected across the plains create electrical charges and, as the air masses are destabilized by the mountain ridges, result in thunderstorm activity.[7] The phenomenon is characterized by almost continuous lightning, mostly within the clouds. The lightning produces a great quantity of ozone, though whether or not this contributes to the ozonosphere is a topic of disagreement, given the instability of the storm.[9][10]

Cause

Russian researcher Andrei Zavrotsky investigated the area several times. He concluded that the lightning has several epicenters in the marshes of Juan Manuel de Aguas National Park, Claras Aguas Negras, and western Lake Maracaibo. In 1991, he suggested that the phenomenon occurred due to cold and warm air currents meeting around the area. The study also speculated that an isolated cause for the lightning might be the presence of uranium in the bedrock.[11]

Between 1997 and 2000, a series of four studies proposed that the methane produced by the swamps and the massive oil deposits in the area were a major cause of the phenomenon.[12] The methane model is based on the symmetry properties of methane. Other studies have indicated that this model is contradicted by the observed behavior of the lightning, as it would predict that there would be more lightning in the dry season (January–February), and less in the wet season (April–May and September–October).[13][14]

A team from the Universidad del Zulia has investigated the impact of different atmospheric variables on Catatumbo lightning's daily, seasonal and year-to-year variability, finding relationships with the Inter-Tropical Convergence Zone (ITCZ), El Niño–Southern Oscillation (ENSO), the Caribbean Low-Level Jet, and the local winds and convective available potential energy (CAPE).[15][16][17][18] Using satellite data, NASA counts that there are around 250 instances of lightning per km2.[5][19][13]

Predictability

A 2016 study showed that it is possible to forecast lightning in the Lake Maracaibo basin up to a few months in advance, based in the variability of the Lake Maracaibo Low-Level Jet and its interactions with predictable climate modes like the ENSO and the Caribbean Low-Level Jet. The study also showed that the forecast accuracy is significantly higher when an index based on a combination of winds and convective available potential energy (CAPE) is used. The index seems to capture well the compound effect of multiple climate drivers.[20]

Historical references

There are several references by colonial Portuguese and Spanish sources, that name this phenomenon as "Lanterns of Saint Anthony" or the "Lighthouse of Maracaibo", as also noted by Alexander Walker in 1822.[21] Based on M. Palacios book "Viage de Varinas", Prussian naturalist and explorer Alexander von Humboldt described the lightning in 1826.[22] Italian geographer Agustin Codazzi described it in 1841 as "like a continuous lightning, and its position such that, located almost on the meridian of the mouth of the lake, it directs the navigators as a lighthouse."[23]

Cultural impact

Flag of Zulia
Coat of arms of Zulia. The lightning is on the right top quarter.

The phenomenon is depicted on the flag and coat of arms of the state of Zulia, which also contains Lake Maracaibo, and is mentioned in the state's anthem. The phenomenon has been known for centuries as the "Lighthouse of Maracaibo", since it is visible for miles around Lake Maracaibo.[24]

Some authors have misinterpreted a reference to a glow in the night sky in Lope de Vega's description in his epic, "La Dragontea" of the attack against San Juan de Puerto Rico by Sir Francis Drake as an early literary allusion to the lightning (since in another verse the poet does mention Maracaibo), but it was actually a reference to the glow produced by burning ships during the battle.[25]

See also

References

  1. "Fogonazos: Catatumbo, the everlasting storm". Fogonazos.blogspot.com. Retrieved 2010-07-27.
  2. Varga, Tamás (19 July 2022). "Eternal Thunder: This Place in Venezuela Has the Highest Concentration of Lightning Strikes in the World". earthlymission.com. Retrieved 23 August 2022.
  3. 1 2 Carroll, Rory (5 March 2010). "Drought extinguishes Venezuela's lightning phenomenon". The Guardian. Retrieved 3 January 2013.
  4. "Catatumbo Lightning – Congo". Real Travel. Archived from the original on 2011-07-16. Retrieved 2010-07-27.
  5. 1 2 Albrecht, R., et al., 2011. The 13 years of TRMM Lightning Imaging Sensor: from individual flash characteristics to decadal tendencies. XIV Int. Conf. Atmos. Elec., Rio de Janeiro, Brazil.
  6. Falcon, Nelson (2021-05-21). "Review and Microphysics of the maximum electricity atmospheric activity in the Word: the Catatumbo Lightning (Venezuela)". Journal of Atmospheric Science Research. 4 (2). doi:10.30564/jasr.v4i2.2740. ISSN 2630-5119.
  7. 1 2 "Catatumbo Lightning". Wondermondo. 2010-08-21.
  8. Guttman, Matt; Robert Rudman. "Venezuela's Mysterious Catatumbo Lightning Phenomenon Vanishes for Months, Then Reappears". ABC News. Retrieved 3 January 2013.
  9. ¿Relámpagos del Catatumbo regeneran la capa de ozono? Archived 2016-03-05 at the Wayback Machine. Agencia de noticias de la Universidad del Zulia.
  10. Maddicks, Russell. "In Venezuela, nature's most electrifying lightning show". www.bbc.com. Retrieved 23 November 2022.
  11. "Una vida consagrada a los números" (PDF). Archived from the original (PDF) on April 20, 2009.
  12. Nicholls, H. (2002-10-17). "Phenomena – A science salon hosted by National Geographic Magazine". PLOS Biology. Blogs.ngm.com. 4 (2): e50. doi:10.1371/journal.pbio.0040050. PMC 1363710. PMID 16464130. Archived from the original on 2012-01-29. Retrieved 2013-02-08.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  13. 1 2 Bürgesser, R. E.; Nicora, M. G.; Ávila, E. E. (2012). "Characterization of the lightning activity of "Relámpago del Catatumbo". Journal of Atmospheric and Solar-Terrestrial Physics. 77: 241–247. Bibcode:2012JASTP..77..241B. doi:10.1016/j.jastp.2012.01.013.
  14. Muñoz, Á.G.; Díaz-Lobatón, J.; Chourio, X.; Stock, J. (2016). "Seasonal prediction of lightning activity in North Western Venezuela: Large-scale versus local drivers". Atmospheric Research. 172–173: 147–162. Bibcode:2016AtmRe.172..147M. doi:10.1016/j.atmosres.2015.12.018.
  15. Muñoz, Á.G., Díaz-Lobatón, J., 2011: "The Catatumbo Lightnings: A review", Memoirs of the XIV International Conference on Atmospheric Electricity. Brazil.
  16. Torrealba, E.; Amador, J. (2010). "La corriente en chorro de bajo nivel sobre los Llanos Venezolanos de Sur América". Revista de Climatología. 10: 1–20.
  17. Muñoz, Á.G., Díaz-Lobatón, J., 2012: Los Relámpagos del Catatumbo y el Flujo Energético Medio en la Cuenca del Lago de Maracaibo. Reporte público CMC-GEO-DDI-02-2011. Centro de Modelado Científico. Universidad del Zulia. 12 p. En http://cmc.org.ve/portal/archivo.php?archivo=241
  18. Muñoz, Á.G., Núñez, A., Chourio, X., Díaz-Lobatón, J., Márquez, R., Moretto, P., Juárez, M., Casanova, V., Quintero, A., Zurita, D., Colmenares, V., Vargas, L., Salcedo, M.L., Padrón, R., Contreras, L., Parra, H., Vaughan, C., Smith, D., 2015: Reporte Final de la Expedición Catatumbo: Abril 2015. Reporte Público CMC-01-2015. Centro de Modelado Científico (CMC). Universidad del Zulia. 20 p. doi:10.13140/RG.2.1.1351.0566
  19. Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J. (2016). "Where are the lightning hotspots on Earth?". Bulletin of the American Meteorological Society. 97 (11): 2051–2068. Bibcode:2016BAMS...97.2051A. doi:10.1175/BAMS-D-14-00193.1.
  20. Muñoz, Á.G.; Díaz-Lobatón, J.; Chourio, X.; Stock, J. (2016). "Seasonal prediction of lightning activity in Northwestern Venezuela: Large-scale versus local drivers". Atmospheric Research. 172–173: 147–162. Bibcode:2016AtmRe.172..147M. doi:10.1016/j.atmosres.2015.12.018.
  21. Walker, Alexander (1822). «Part 1». Colombia, relación geográfica, topográfica, agrícola
  22. Alexander von Humboldt and Aimé Bonpland, Viage a las Regiones Equinocciales del Nuevo Continente, volume 2, book V, chapter XVI, page 390, note, Casa de Rosa, Paris, 1826; Ediciones del Ministerio de Educación, 2a. ed., Caracas, 1956
  23. Codazzi Agustín, Resumen de la Geografía de Venezuela, Fournier, Paris, 1841, pp. 20, 464 y 466.
  24. Nicholls, H. (2002-10-17). "Lightning Up, 4 Feb 2010". PLOS Biology. Blogs.ngm.com. 4 (2): e50. doi:10.1371/journal.pbio.0040050. PMC 1363710. PMID 16464130. Archived from the original on 2012-01-29. Retrieved 2013-02-08.{{cite journal}}: CS1 maint: bot: original URL status unknown (link)
  25. Dislates y Disparates sobre el Relámpago del Catatumbo: La expedición de Drake, de 1595 Archived 2016-11-03 at the Wayback Machine, Ángel Vicente Muñoz García, Centro de Modelado Científico, Maracaibo, agosto 2016.

9°20′39″N 71°42′38″W / 9.34417°N 71.71056°W / 9.34417; -71.71056 (Approximate center)

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.