CAMKK2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCAMKK2, CAMKK, CAMKKB, calcium/calmodulin-dependent protein kinase kinase 2, calcium/calmodulin dependent protein kinase kinase 2
External IDsOMIM: 615002 MGI: 2444812 HomoloGene: 32756 GeneCards: CAMKK2
Orthologs
SpeciesHumanMouse
Entrez

10645

207565

Ensembl

ENSG00000110931

ENSMUSG00000029471

UniProt

Q96RR4

Q8C078

RefSeq (mRNA)

NM_001199676
NM_145358

RefSeq (protein)

NP_001186605
NP_663333

Location (UCSC)Chr 12: 121.24 – 121.3 MbChr 5: 122.87 – 122.92 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Calcium/calmodulin-dependent protein kinase kinase 2 is an enzyme that in humans is encoded by the CAMKK2 gene.[5][6]

Function

The product of this gene belongs to the serine/threonine-specific protein kinase family, and to the Ca++/calmodulin-dependent protein kinase subfamily. This protein plays a role in the calcium/calmodulin-dependent (CaM) kinase cascade by phosphorylating the downstream kinases CaMK1 and CaMK4,[6] which increases their catalytic activity.[7] CaMK1 and CaMK4 are phosphorylated at the Thr 177 and Thr 196 resides respectively.[8][9]

CaMKK2 regulates production of the appetite stimulating hormone neuropeptide Y and functions as an AMPK kinase in the hypothalamus.[10] It also has an important role in the development of hyperalgesia and tolerance to opioid analgesic drugs, through reduction in downstream signalling pathways and mu opioid receptor downregulation.[11][12][13] Inhibition of CaMKK2 in mice reduces appetite and promotes weight loss.[10]

CaMKK2 has several functions in different brain regions. In the hippocampus, the CaMKK2/CaMK1 cascade is necessary for memory formation through the regulation of learning-induced structural changes in the neuronal cytoskeleton.[14][15] Morphological changes in dendritic spines in the hippocampus - which are necessary for initiating and maintaining the synaptic plasticity in CA1 pyramidal neurons - are the main structural basis for the formation of memories.[16][15]

The CaMKK2/CaMKIV/CREB cascade is involved in the postnatal development of the cerebellum. CaMKK2 deletion impairs development of Cerebellar Granule Cells -the most abundant cells in the cerebellum- by inhibiting the ability of Granule Cell Precursors (GCPs) to stop proliferating in the external granule layer (EGL) and migrate to the internal granule layer.[17][18][19] This phenotype is also tied to reduced BDNF expression and decreased CREB phosphorylation. Thus, the CaMKK2/CaMKIV/CREB cascade is required for BDNF (Brain Derived Neurotrophic Factor) production in the post-natal cerebellum in order to complete an important step of CGC development.[15] Neuronal CaMKK2's regulation of BDNF was recently implicated in progression of Glioblastoma.[20]

In the hypothalamus, CaMKK2 is involved in centrally mediating energy homeostasis by forming a signaling complex with AMPKα/β and Ca2+/CaM.[10][15] Genetic ablation of CaMKK2 decreases AMPK[21] activity in hypothalamus and down regulates NPY and AgRP gene expression in NPY Neurons, which has been shown to protect mice from diet-induced obesity, hyperglycemia, and insulin resistance.[10] Additionally, CaMKK2 is involved in the genetic regulation of genes necessary for optimal sympathetic activity in the medial hypothalamus, and therefore bone mass accrual, which can be said to be negatively associated to sympathetic tone.[22][15]

Isoforms

Seven transcript variants encoding six distinct isoforms have been identified for this gene. Additional splice variants have been described but their full-length nature has not been determined. The identified isoforms exhibit a distinct ability to undergo autophosphorylation and to phosphorylate the downstream kinases.[6][23]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000110931 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029471 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hsu LS, Tsou AP, Chi CW, Lee CH, Chen JY (Sep 1998). "Cloning, expression and chromosomal localization of human Ca2+/calmodulin-dependent protein kinase kinase". Journal of Biomedical Science. 5 (2): 141–9. doi:10.1159/000025324. PMID 9662074. S2CID 90281764.
  6. 1 2 3 "Entrez Gene: CAMKK2 calcium/calmodulin-dependent protein kinase kinase 2, beta".
  7. "CAMK1 - Calcium/calmodulin-dependent protein kinase type 1 - Homo sapiens (Human) - CAMK1 gene & protein". www.uniprot.org. Retrieved 2021-05-15.
  8. Soderling TR (June 1999). "The Ca-calmodulin-dependent protein kinase cascade". Trends in Biochemical Sciences. 24 (6): 232–6. doi:10.1016/s0968-0004(99)01383-3. PMID 10366852.
  9. Selbert MA, Anderson KA, Huang QH, Goldstein EG, Means AR, Edelman AM (July 1995). "Phosphorylation and activation of Ca(2+)-calmodulin-dependent protein kinase IV by Ca(2+)-calmodulin-dependent protein kinase Ia kinase. Phosphorylation of threonine 196 is essential for activation". The Journal of Biological Chemistry. 270 (29): 17616–21. doi:10.1074/jbc.270.29.17616. PMID 7615569.
  10. 1 2 3 4 Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, et al. (May 2008). "Hypothalamic CaMKK2 contributes to the regulation of energy balance". Cell Metabolism. 7 (5): 377–88. doi:10.1016/j.cmet.2008.02.011. PMID 18460329.
  11. Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, de la Torre-Madrid E, Garzón J (February 2008). "Calcium/calmodulin-dependent protein kinase II supports morphine antinociceptive tolerance by phosphorylation of glycosylated phosducin-like protein". Neuropharmacology. 54 (2): 319–30. doi:10.1016/j.neuropharm.2007.10.002. hdl:10261/63344. PMID 18006024. S2CID 23956064.
  12. Chen Y, Jiang Y, Yue W, Zhou Y, Lu L, Ma L (October 2008). "Chronic, but not acute morphine treatment, up-regulates alpha-Ca2+/calmodulin dependent protein kinase II gene expression in rat brain". Neurochemical Research. 33 (10): 2092–8. doi:10.1007/s11064-008-9690-0. PMID 18408996. S2CID 1686579.
  13. Chen Y, Yang C, Wang ZJ (January 2010). "Ca2+/calmodulin-dependent protein kinase II alpha is required for the initiation and maintenance of opioid-induced hyperalgesia". The Journal of Neuroscience. 30 (1): 38–46. doi:10.1523/JNEUROSCI.4346-09.2010. PMC 2821163. PMID 20053885.
  14. Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Silva A, Soderling TR (September 2008). "Calmodulin-kinases: modulators of neuronal development and plasticity". Neuron. 59 (6): 914–31. doi:10.1016/j.neuron.2008.08.021. PMC 2664743. PMID 18817731.
  15. 1 2 3 4 5 Racioppi L, Means AR (September 2012). "Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology". The Journal of Biological Chemistry. 287 (38): 31658–65. doi:10.1074/jbc.R112.356485. PMC 3442500. PMID 22778263.
  16. Morgado-Bernal I (March 2011). "Learning and memory consolidation: linking molecular and behavioral data". Neuroscience. 176: 12–9. doi:10.1016/j.neuroscience.2010.12.056. PMID 21215299. S2CID 34665819.
  17. Hatten ME, Heintz N (1995). "Mechanisms of neural patterning and specification in the developing cerebellum". Annual Review of Neuroscience. 18: 385–408. doi:10.1146/annurev.ne.18.030195.002125. PMID 7605067.
  18. Wang VY, Zoghbi HY (July 2001). "Genetic regulation of cerebellar development". Nature Reviews. Neuroscience. 2 (7): 484–91. doi:10.1038/35081558. PMID 11433373. S2CID 20373774.
  19. Kokubo M, Nishio M, Ribar TJ, Anderson KA, West AE, Means AR (July 2009). "BDNF-mediated cerebellar granule cell development is impaired in mice null for CaMKK2 or CaMKIV". The Journal of Neuroscience. 29 (28): 8901–13. doi:10.1523/JNEUROSCI.0040-09.2009. PMC 2763571. PMID 19605628.
  20. Tomaszewski WH, Waibl-Polania J, Chakraborty M, Perera J, Ratiu J, Miggelbrink A, et al. (October 2022). "Neuronal CaMKK2 promotes immunosuppression and checkpoint blockade resistance in glioblastoma". Nature Communications. 13 (1): 6483. Bibcode:2022NatCo..13.6483T. doi:10.1038/s41467-022-34175-y. PMC 9617949. PMID 36309495.
  21. Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, et al. (March 2004). "AMP-activated protein kinase plays a role in the control of food intake". The Journal of Biological Chemistry. 279 (13): 12005–8. doi:10.1074/jbc.C300557200. hdl:10044/1/631. PMID 14742438.
  22. Oury F, Yadav VK, Wang Y, Zhou B, Liu XS, Guo XE, et al. (October 2010). "CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons". Genes & Development. 24 (20): 2330–42. doi:10.1101/gad.1977210. PMC 2956211. PMID 20952540.
  23. Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY (August 2001). "Human Ca2+/calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity". The Journal of Biological Chemistry. 276 (33): 31113–23. doi:10.1074/jbc.M011720200. PMID 11395482.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.