Bio-radiolocation is a technology[1] for remote detection and diagnostics of biological objects by means of radar,[2] even behind optically opaque obstacles.[3][4] Devices based on this method are called bio-radars.
Theoretical basis
This technology is based on the reflected signal modulation caused by movements of the human body and internal organs. While the examinee maintains a calm state (e.g. is sleeping or sitting in a fixed pose) modulation of bio-radar signal is caused mainly by respiratory movements (0.2-0.5 Hz) and heart and superficial arteries pulsations (0.5–20 Hz).[5] The amplitude of thorax surface displacement caused by respiratory muscles contractions is about 1 cm, while the same parameter for heart beating is only 1 mm. Recently, researchers showed that heart sounds (20–80 Hz) with an amplitude in the micrometer range can be detected, too.[6][7][8] The order of registered parameters determines the usage of microwave frequency band. Impulse,[9] linearly[10] or step-frequency [11] modulated and monochromatic[12] signals can be used as probing ones.
Applications
The main advantage of bio-radiolocation is its remote and contactless nature.[13] At present, commercially available bio-radars are aimed at the detection of people and at tracking them behind buildings or other obstacles (e.g. during antiterrorist operations[14][15]). There are also bio-radars, used by rescuers for finding people under building debris.[16] However, such devices have not found widespread application in disaster rescue operations due to fundamental limitations of the method related to noises and background reflections.
The most promising area in which bio-radiolocation method may be applied is medicine.[17] Bio-radar can be used in sleep medicine[18] for sleep apnea syndrome monitoring[19] in adults and newborns. Furthermore, it can be used for the measurement of heart sounds[6] and to extract heart rate variability.[20] In addition, they can be applied in a host of other fields, such as professional selection,[21] pharmacology, and zoo-psychology,[22] etc.[23]
References
- ↑ Li, Changzhi; Lubecke, Victor M.; Boric-Lubecke, Olga; Lin, Jenshan (2013). "A Review on Recent Advances in Doppler Radar Sensors for Noncontact Healthcare Monitoring". IEEE Transactions on Microwave Theory and Techniques. 61 (5): 2046–2060. Bibcode:2013ITMTT..61.2046L. doi:10.1109/TMTT.2013.2256924. S2CID 18274335.
- ↑ Ahmad, Fauzia; Narayanan, Ram M.; Schreurs, Dominique (2015). "Application of Radar to Remote Patient Monitoring and Eldercare". IET Radar, Sonar & Navigation. 9 (2): 115. doi:10.1049/iet-rsn.2015.0038. S2CID 122131216.
- ↑ Soldovieri, Francesco; Catapano, Ilaria; Crocco, Lorenzo; Anishchenko, Lesya N.; Ivashov, Sergey I. (2012). "A Feasibility Study for Life Signs Monitoring via a Continuous-Wave Radar". International Journal of Antennas and Propagation. 2012: 1–5. doi:10.1155/2012/420178.
- ↑ Xu, Hui; Li, Bangyu; Che, Xinsheng; Ren, Jian (2011). "Analyzing the Effect and Selecting the Parameter of Bioradar Antenna for Measurement". Advanced Research on Computer Education, Simulation and Modeling. Communications in Computer and Information Science. Vol. 176. pp. 451–456. doi:10.1007/978-3-642-21802-6_73. ISBN 978-3-642-21801-9.
- ↑ Will, Christoph; Shi, Kilin; Schellenberger, Sven; Steigleder, Tobias; Michler, Fabian; Weigel, Robert; Ostgathe, Christoph; Koelpin, Alexander (2017). "Local Pulse Wave Detection Using Continuous Wave Radar Systems". IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology. 1 (2): 81–89. doi:10.1109/JERM.2017.2766567. S2CID 20747916.
- 1 2 Will, Christoph; Shi, Kilin; Schellenberger, Sven; Steigleder, Tobias; Michler, Fabian; Fuchs, Jonas; Weigel, Robert; Ostgathe, Christoph; Koelpin, Alexander (2018). "Radar-Based Heart Sound Detection". Scientific Reports. 8 (1): 11551. Bibcode:2018NatSR...811551W. doi:10.1038/s41598-018-29984-5. PMC 6070547. PMID 30068983.
- ↑ Shi, Kilin; Schellenberger, Sven; Will, Christoph; Steigleder, Tobias; Michler, Fabian; Fuchs, Jonas; Weigel, Robert; Ostgathe, Christoph; Koelpin, Alexander (2020-02-13). "A dataset of radar-recorded heart sounds and vital signs including synchronised reference sensor signals". Scientific Data. 7 (1): 50. Bibcode:2020NatSD...7...50S. doi:10.1038/s41597-020-0390-1. ISSN 2052-4463. PMC 7018953. PMID 32054854.
- ↑ Shi, Kilin; Schellenberger, Sven; Michler, Fabian; Steigleder, Tobias; Malessa, Anke; Lurz, Fabian; Ostgathe, Christoph; Weigel, Robert; Koelpin, Alexander (2020). "Automatic Signal Quality Index Determination of Radar-Recorded Heart Sound Signals Using Ensemble Classification". IEEE Transactions on Biomedical Engineering. 67 (3): 773–785. doi:10.1109/TBME.2019.2921071. ISSN 1558-2531. PMID 31180834. S2CID 184484379.
- ↑ Immoreev, Igor Y. (2010). "Practical applications of UWB technology". IEEE Aerospace and Electronic Systems Magazine. 25 (2): 36–42. doi:10.1109/MAES.2010.5442175. S2CID 45543286.
- ↑ Wang, Fu-Kang; Horng, Tzyy-Sheng; Peng, Kang-Chun; Jau, Je-Kuan; Li, Jian-Yu; Chen, Cheng-Chung (2013). "Detection of Concealed Individuals Based on Their Vital Signs by Using a See-Through-Wall Imaging System with a Self-Injection-Locked Radar". IEEE Transactions on Microwave Theory and Techniques. 61 (1): 696–704. Bibcode:2013ITMTT..61..696W. doi:10.1109/TMTT.2012.2228223. S2CID 16853266.
- ↑ Otsu, Mitsugu; Nakamura, Ryohei; Kajiwara, Akihiro (2011). "Remote respiration monitoring sensor using stepped-FM". 2011 IEEE Sensors Applications Symposium. pp. 155–158. doi:10.1109/SAS.2011.5739784. ISBN 978-1-4244-8063-0. S2CID 16557750.
- ↑ S.I. Ivashov, V.V. Razevig, A.P. Sheyko, I.A. Vasilyev, "Detection of Human Breathing and Heartbeat by Remote Radar", Progress in Electromagnetics Research Symposium (PIERS 2004), March 28–31, 2004, Pisa, Italy, pp. 663-666.
- ↑ Alekhin, Maksim; Anishchenko, Lesya; Tataraidze, Alexander; Ivashov, Sergey; Parashin, Vladimir; Dyachenko, Alexander (2013). "Comparison of Bioradiolocation and Respiratory Plethysmography Signals in Time and Frequency Domains on the Base of Cross-Correlation and Spectral Analysis". International Journal of Antennas and Propagation. 2013: 1–6. doi:10.1155/2013/410692. ISSN 1687-5869.
- ↑ "Xaver 400 Compact, Tactical Through-Wall Imaging System". Camero-tech.com. Archived from the original on 2014-04-03. Retrieved 2014-03-13.
- ↑ Zetik, Rudolf; Crabbe, Stephen; Krajnak, Jozef; Peyerl, Peter; Sachs, Jürgen; Thomä, Reiner (2006). "Detection and localization of persons behind obstacles using M-sequence through-the-wall radar". In Carapezza, Edward M (ed.). Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V. Vol. 6201. pp. 62010I. doi:10.1117/12.667989. S2CID 12892463.
- ↑ M. Pieraccini, G. Grazzini, D. Dei, C. Atzeni, GPR system to locate survivors of natural disasters // Proc. Of 12th International Conference on ground penetrating radar, June 16–19, 2008, Birmingham, UK.
- ↑ Staderini, E.M. (2002). "UWB radars in medicine". IEEE Aerospace and Electronic Systems Magazine. 17: 13–18. doi:10.1109/62.978359.
- ↑ Alekhin, Maksim; Anishchenko, Lesya; Tataraidze, Alexander; Ivashov, Sergey; Parashin, Vladimir; Korostovtseva, Lyudmila; Sviryaev, Yurii; Bogomolov, Alexey (2013). "A Novel Method for Recognition of Bioradiolocation Signal Breathing Patterns for Noncontact Screening of Sleep Apnea Syndrome". International Journal of Antennas and Propagation. 2013: 1–8. doi:10.1155/2013/969603. ISSN 1687-5869.
- ↑ Alekhin, M. D.; Anishchenko, L. N.; Zhuravlev, A. V.; Ivashov, S. I.; Korostovtseva, L. S.; Sviryaev, Y. V.; Konradi, A. O.; Parashin, V. B.; Bogomolov, A. V. (2013). "Estimation of Information Value of Diagnostic Data Obtained by Bioradiolocation Pneumography in Non-contact Screening of Sleep Apnea Syndrome". Biomedical Engineering. 47 (2): 96–99. doi:10.1007/s10527-013-9343-8. S2CID 12473547.
- ↑ Shi, Kilin; Steigleder, Tobias; Schellenberger, Sven; Michler, Fabian; Malessa, Anke; Lurz, Fabian; Rohleder, Nicolas; Ostgathe, Christoph; Weigel, Robert; Koelpin, Alexander (2021-02-04). "Contactless analysis of heart rate variability during cold pressor test using radar interferometry and bidirectional LSTM networks". Scientific Reports. 11 (1): 3025. Bibcode:2021NatSR..11.3025S. doi:10.1038/s41598-021-81101-1. ISSN 2045-2322. PMC 7862409. PMID 33542260.
- ↑ Anishchenko, L. N.; Bugaev, A. S.; Ivashov, S. I.; Zhuravlev, A. V. (2011). "Bioradar for monitoring of human adaptive capabilities". 2011 XXXTH URSI General Assembly and Scientific Symposium. pp. 1–4. doi:10.1109/URSIGASS.2011.6051322. ISBN 978-1-4244-5117-3. S2CID 28329694.
- ↑ Application of Bioradiolocation for Estimation of the Laboratory Animals' Movement Activity /L.N. Anishchenko, A.S. Bugaev, S.I. Ivashov, I.A. Vasiliev //PIERS Online. 2009. Vol. 5, No. 6. P.551 – 554.
- ↑ "Kardian - ABOUT". Kardian. Archived from the original on 2018-06-18. Retrieved 2018-06-18.