In algebra, an augmentation ideal is an ideal that can be defined in any group ring.
If G is a group and R a commutative ring, there is a ring homomorphism , called the augmentation map, from the group ring to , defined by taking a (finite[Note 1]) sum to (Here and .) In less formal terms, for any element , for any elements and , and is then extended to a homomorphism of R-modules in the obvious way.
The augmentation ideal A is the kernel of and is therefore a two-sided ideal in R[G].
A is generated by the differences of group elements. Equivalently, it is also generated by , which is a basis as a free R-module.
For R and G as above, the group ring R[G] is an example of an augmented R-algebra. Such an algebra comes equipped with a ring homomorphism to R. The kernel of this homomorphism is the augmentation ideal of the algebra.
The augmentation ideal plays a basic role in group cohomology, amongst other applications.
Examples of quotients by the augmentation ideal
- Let G a group and the group ring over the integers. Let I denote the augmentation ideal of . Then the quotient I/I2 is isomorphic to the abelianization of G, defined as the quotient of G by its commutator subgroup.
- A complex representation V of a group G is a - module. The coinvariants of V can then be described as the quotient of V by IV, where I is the augmentation ideal in .
- Another class of examples of augmentation ideal can be the kernel of the counit of any Hopf algebra.
Notes
- ↑ When constructing R[G], we restrict R[G] to only finite (formal) sums
References
- D. L. Johnson (1990). Presentations of groups. London Mathematical Society Student Texts. Vol. 15. Cambridge University Press. pp. 149–150. ISBN 0-521-37203-8.
- Dummit and Foote, Abstract Algebra