Alfonso Nieto-Castanon | |
---|---|
Born | September 1972 |
Alma mater | Universidad de Valladolid, Boston University |
Known for | functional neuroimaging, subject-specific ROIs, connectome, CONN |
Scientific career | |
Fields | Computational neuroscience, Neuroimaging |
Institutions | Boston University, Massachusetts Institute of Technology |
Doctoral advisor | Frank H. Guenther |
Alfonso Nieto-Castanon (born September 1972) is a Spanish computational neuroscientist and developer of computational neuroimaging analysis methods and tools. He is a visiting researcher at the Boston University College of Health and Rehabilitation Sciences,[1] and research affiliate at MIT McGovern Institute for Brain Research.[2] His research focuses on the understanding and characterization of human brain dynamics underlying mental function.
Early life and education
Nieto-Castanon was born in Spain in 1972.[3] He was part of the first Spanish team to participate in the International Physics Olympiad in 1990. He went to college at the Universidad de Valladolid from 1991 to 1995 and earned a B.S./M.S. in Telecommunications Engineering. In 1998 he pursued graduate studies in Boston University Cognitive and Neural Systems Department and was awarded a research training fellowship from Fundación Séneca/Cedetel, and a graduate research fellowship from Boston University. He received a Ph.D. in Computational Neuroscience in 2004.[4]
Contributions to science
ROI analyses
In some of his early work Nieto-Castanon helped develop novel methods for region of interest (ROI) analyses of fMRI data,[5] with a focus on multivariate techniques and the use of subject-specific ROIs, where regions of interest are defined differently for each person based on common anatomical or functional landmarks.[6][7] Subject-specific ROIs allowed researchers to probe the limits of the functional localization hypotheses common in neuroimaging, and better understand the spatial and functional specificity of different brain areas.[8]
Brain-computer interfaces
In collaboration with Boston University's Neural Prosthesis Laboratory, Nieto-Castanon helped build a Neuroprosthetic device for real-time speech synthesis.[9] This system was designed to allow patients with locked-in syndrome to produce speech by decoding signals from a neurotrophic electrode implanted in the brain.[10][11]
Functional connectivity
Nieto-Castanon also developed multiple influential mathematical and computational techniques for functional connectivity analyses,[12] with a special emphasis on the robust estimation of functional connectivity measures in the presence of subject-motion and physiological noise sources.[13] In 2011 he developed CONN to integrate and facilitate best practices in functional connectivity studies.[14] CONN included a combination of novel methods such as multivariate connectivity analyses and dynamic connectivity estimation, together with multiple well known techniques such as psycho-physiological interactions, graph analyses, or independent component analyses. His software has been since widely adopted in the field[15][16][17][18][19] and it is now regularly used in functional connectivity studies, with over 900 citations during 2021 alone[20]
Nieto-Castanon has given numerous courses and lectures worldwide[21][22][23][24][25] and his work has been cited in over 8000 refereed journal articles to date.[26]
International competitions
Beyond his research, Nieto-Castanon is also recognized for his participation in international programming and data-analysis competitions. Programming in Matlab, Nieto-Castanon won in 2009 and in 2011 the Color Bridge and Vines MathWorks collaborative-programming competitions.[27][28] He was also the winner in 2011 of the Microsoft Kinect video gesture identification competition,[29][30] obtained second place at the Marinexplore and Cornell University Whale Detection audio classification challenge,[31] took first prize in 2013 Genentech's Flu Forecasting predictive model competition,[32] and placed second in MathWorks 2014 bin packing optimization competition.[33] In 2013 Nieto-Castanon was ranked as the third best data-scientist in Kaggle,[34][35] and he has been ranked as the best Matlab programmer in MathWorks Cody games for seven consecutive years between 2013 and 2019.[36]
References
- ↑ Boston University
- ↑ Massachusetts Institute of Technology
- ↑ Dissertation VITA
- ↑ Nieto-Castanon, A. (2004). An investigation of articulatory-acoustic relationships in speech production. Boston University
- ↑ Nieto-Castanon, Alfonso; Ghosh, Satrajit S.; Tourville, Jason A.; Guenther, Frank H. (August 2003). "Region of interest based analysis of functional imaging data". NeuroImage. 19 (4): 1303–1316. doi:10.1016/s1053-8119(03)00188-5. PMID 12948689. S2CID 7230124.
- ↑ Nieto-Castañón, Alfonso; Fedorenko, Evelina (2012-11-15). "Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses". NeuroImage. 63 (3): 1646–1669. doi:10.1016/j.neuroimage.2012.06.065. PMC 3477490. PMID 22784644.
- ↑ Fedorenko, Evelina; Hsieh, Po-Jang; Nieto-Castañón, Alfonso; Whitfield-Gabrieli, Susan; Kanwisher, Nancy (August 2010). "New method for fMRI investigations of language: defining ROIs functionally in individual subjects". Journal of Neurophysiology. 104 (2): 1177–1194. doi:10.1152/jn.00032.2010. PMC 2934923. PMID 20410363.
- ↑ Fedorenko, Evelina (2021). "The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience". Current Opinion in Behavioral Sciences. 40: 105–112. doi:10.1016/j.cobeha.2021.02.023. hdl:1721.1/138409.2. S2CID 232265279.
- ↑ US 10553199, Guenther, Frank Harold & Nieto-Castanon, Alfonso, "Low-dimensional real-time concatenative speech synthesizer", published 2020-02-04, assigned to Trustees of Boston University
- ↑ “Brain-Powered Technology May Help Locked-In Patients” PBS NewsHour, October 14, 2011, https://www.pbs.org/newshour/rundown/2011/10/brain-powered-technology-may-help-locked-in-patients.html Archived 2014-01-22 at the Wayback Machine
- ↑ Keim, Brandon. "Wireless Brain-to-Computer Connection Synthesizes Speech". Wired. ISSN 1059-1028. Retrieved 2023-08-11.
- ↑ Nieto-Castanon, A. (2020). Handbook of functional connectivity Magnetic Resonance Imaging methods in CONN. Hilbert Press.
- ↑ Chai, Xiaoqian J.; Castañón, Alfonso Nieto; Ongür, Dost; Whitfield-Gabrieli, Susan (2012-01-16). "Anticorrelations in resting state networks without global signal regression". NeuroImage. 59 (2): 1420–1428. doi:10.1016/j.neuroimage.2011.08.048. PMC 3230748. PMID 21889994.
- ↑ Whitfield-Gabrieli, Susan; Nieto-Castanon, Alfonso (2012). "Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks". Brain Connectivity. 2 (3): 125–141. doi:10.1089/brain.2012.0073. PMID 22642651.
- ↑ Dixon, Matthew L.; de la Vega, Alejandro; Mills, Caitlin; Andrews-Hanna, Jessica; Spreng, R. Nathan; Cole, Michael W.; Christoff, Kalina (2018). "Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks". Proceedings of the National Academy of Sciences. 115 (7): E1598–E1607. Bibcode:2018PNAS..115E1598D. doi:10.1073/pnas.1715766115. PMC 5816169. PMID 29382744.
- ↑ Vatansever, D.; Menon, D. K.; Manktelow, A. E.; Sahakian, B. J.; Stamatakis, E. A. (2015). "Default Mode Dynamics for Global Functional Integration". Journal of Neuroscience. 35 (46): 15254–15262. doi:10.1523/JNEUROSCI.2135-15.2015. PMC 4649001. PMID 26586814.
- ↑ Boes, Aaron D.; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S.; Fox, Michael D. (2015). "Network localization of neurological symptoms from focal brain lesions". Brain. 138 (10): 3061–3075. doi:10.1093/brain/awv228. PMC 4671478. PMID 26264514.
- ↑ Demertzi, Athena; Antonopoulos, Georgios; Heine, Lizette; Voss, Henning U.; Crone, Julia Sophia; De Los Angeles, Carlo; Bahri, Mohamed Ali; Di Perri, Carol; Vanhaudenhuyse, Audrey; Charland-Verville, Vanessa; Kronbichler, Martin; Trinka, Eugen; Phillips, Christophe; Gomez, Francisco; Tshibanda, Luaba; Soddu, Andrea; Schiff, Nicholas D.; Whitfield-Gabrieli, Susan; Laureys, Steven (2015). "Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients". Brain. 138 (9): 2619–2631. doi:10.1093/brain/awv169. PMID 26117367.
- ↑ Dodhia, Sonam; Hosanagar, Avinash; Fitzgerald, Daniel A.; Labuschagne, Izelle; Wood, Amanda G.; Nathan, Pradeep J.; Phan, K Luan (2014). "Modulation of Resting-State Amygdala-Frontal Functional Connectivity by Oxytocin in Generalized Social Anxiety Disorder". Neuropsychopharmacology. 39 (9): 2061–2069. doi:10.1038/npp.2014.53. PMC 4104324. PMID 24594871.
- ↑ Google Scholar CONN references
- ↑ Harvard/MGH courses
- ↑ Neurometrika courses
- ↑ Harvard/MGH courses
- ↑ University of Cincinnati & CHMC
- ↑ BCBL
- ↑ Google Scholar Nieto-Castanon profile
- ↑ Matlab contest Hall of Fame
- ↑ Saez, Juan Manuel. "Alfonso Nieto Castanon gana por segunda vez este concurso de programacion online de MathWorks". Developers TI.
- ↑ Byrne, Ciara (December 12, 2011). "Kaggle launches competition to help Microsoft Kinect learn new gestures". VentureBeat. Retrieved 13 December 2011.
- ↑ Kaggle Microsoft Kinect competition
- ↑ Marlow, Jeffrey (February 12, 2013). "Wanted: Right Whale Caller ID". Wired.
- ↑ "Join the team". Kaggle newsletter. Archived from the original on 2016-04-23.
- ↑ "Packing Santa's Sleigh". MathWorks Blogs. March 21, 2014.
- ↑ "Google buys Kaggle and its gaggle of AI geeks". CNET. 2017-03-08. Retrieved 2018-06-01.
- ↑ Kaggle Nieto-Castanon profile
- ↑ Gulley, Ned (January 29, 2014). "Cody interview:Alfonso Nieto-Castanon". MathWorks Blogs.
External links
- Official website
- Alfonso Nieto-Castanon publications indexed by Google Scholar