epsilon number
English
Etymology
From the Greek letter ε (“epsilon”), used to denote the numbers.
Noun
epsilon number (plural epsilon numbers)
- (set theory) Any (necessarily transfinite) ordinal number α such that ωα = α; (by generalisation) any surreal number that is a fixed point of the exponential map x → ωx.
- 1977, Herbert B. Enderton, Elements of Set Theory, Elsevier (Academic Press), page 240:
- More generally, the epsilon numbers are the ordinals for which . The smallest epsilon number is . It is a countable ordinal, being the countable union of countable sets. By the Veblen fixed-point theorem, the class of epsilon numbers is unbounded.
- 1981, The Journal of Symbolic Logic, Association for Symbolic Logic, page 17:
- We show that the associated ordinals are the th epsilon number and the first -critical number, respectively.
- 2014, Charles C. Pinter, A Book of Set Theory, 2014, Dover, [Revision of 1971 Addison-Wesley edition], page 203,
- Thus there is at least one epsilon number, namely ; we can easily show, in fact, that is the least epsilon number.
Usage notes
- The smallest epsilon number, denoted (read epsilon nought or epsilon zero), is a limit ordinal definable as the supremum of a sequence of smaller limit ordinals: .
- This sequence can be extended recursively: , , , ...
- The recursion is applied transfinitely, thus extending the definition to , ...
- is countable, as is any for which is countable.
- Epsilon numbers also exist that are uncountable; the index of any such must itself be an uncountable ordinal.
- When generalised to the surreal number domain, epsilon numbers are no longer required to be ordinals and the index may be any surreal number (including any negative, fraction or limit).
Related terms
- delta number
- gamma number
Translations
type of transfinite or surreal number
|
See also
- epsilon-induction
Further reading
- Ordinal arithmetic on Wikipedia.Wikipedia
- Additively indecomposable ordinal on Wikipedia.Wikipedia
- Large countable ordinal on Wikipedia.Wikipedia
- Veblen function on Wikipedia.Wikipedia
This article is issued from Wiktionary. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.