Izoterma LGD (izoterma Lopez-Gonzaleza i Dietza) – 2-parametrowe równanie, które opisuje adsorpcję wielowarstwową na powierzchni homogenicznej (energetycznie jednorodnej). Jest prostą izotermą adsorpcji o charakterze eksperymentalnym, powstałą w wyniku spostrzeżenia, że dane izoterm doświadczalnych dobrze opisywanych w obszarze niskich i średnich ciśnień względnych x (z reguły od 0,05 do 0,4) przez znane izotermy teoretyczne leżą zwykle pomiędzy nimi. Przewidywania dalszego przebiegu (x > 0,4) za pomocą izotermy BET dawały zbyt wysokie wartości adsorpcji, natomiast dla izotermy Hüttiga przewidywania były zbyt niskie. Stąd badacze zaproponowali stosowanie prostego równania będącego w istocie średnią arytmetyczną równań izoterm BET i Hüttiga:

gdzie:

Okazało się, że taka prosta 2-parametrowa izoterma zadziwiająco dobrze pasowała do wielu izoterm eksperymentalnych. Wytłumaczeniem może być to, że izoterma BET zwykle przewiduje zbyt silną adsorpcję w obszarze tworzenia wielowarstwy, podczas gdy izoterma Hüttiga z reguły zaniża przewidywania.

Stosunkowo niedawno zaproponowano bardzo podobne równanie, izotermę LGDa, będące w istocie analitycznym przybliżeniem izotermy LGD. Zaletą tego równania jest ułatwiona analiza jego właściwości:

Równania LGD i LGDa mogą być stosowane jako izotermy lokalne przy opisie adsorpcji na powierzchni heterogenicznej (energetycznie niejednorodnej) za pomocą ogólnego równania całkowego.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.