Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Cetus |
Right ascension | 01h 57m 03.204s[1] |
Declination | 00° 45′ 31.88″[1] |
Apparent magnitude (V) | 10.56[2] |
Characteristics | |
Spectral type | F8[3] |
B−V color index | 0.896[2] |
Astrometry | |
Radial velocity (Rv) | 7.690±0.004[4] km/s |
Proper motion (μ) | RA: 23.418 mas/yr[1] Dec.: −6.844 mas/yr[1] |
Parallax (π) | 2.8158 ± 0.0265 mas[1] |
Distance | 1,160 ± 10 ly (355 ± 3 pc) |
Details[5] | |
Mass | 1.53+0.07 −0.06 M☉ |
Radius | 2.17+0.18 −0.10 R☉ |
Surface gravity (log g) | 3.944+0.036 −0.050 cgs |
Temperature | 6,050±100 K |
Metallicity [Fe/H] | 0.15±0.07 dex |
Rotational velocity (v sin i) | 7.8±0.3 km/s |
Age | 3.6+1.6 −1.0 Gyr |
Other designations | |
Database references | |
SIMBAD | 436 data |
BD+00 316 is an ordinary star with a close-orbiting planetary companion in the equatorial constellation of Cetus. It is also known as WASP-71 since 2019;[3] BD+00 316 is the stellar identifier from the Bonner Durchmusterung catalogue. With an apparent visual magnitude of 10.56,[2] it is too faint to be visible to the naked eye. This star is located at a distance of 1,160 light-years based on parallax measurements, and is drifting further away with a heliocentric radial velocity of 7.7 km/s.[4]
This is classified as an F-type star with a stellar classification of F8.[3] It is more than double the diameter of the Sun with 1.5 times the Sun's mass. The star is younger than the Sun at about 3.6 billion years,[5] yet is already evolving away from the main sequence.[3] BD+00 316 is enriched in heavy elements, having 140% of the solar abundance of iron.[5] Imaging surveys in 2015 and 2020 failed to find any stellar companions for BD+00 316.[7][8]
The star was named Mpingo by Tanzanian amateur astronomers in 2020 as part of the NameExoWorlds contest, after the mpingo tree (Dalbergia melanoxylon) whose wood is a type of ebony used in musical instruments.[9]
Planetary system
In 2012 a transiting superjovian planet, designated component b, was detected on a tight, circular orbit.[3] The planetary orbit is well aligned with the equatorial plane of the star, the misalignment angle being equal to −1.9+7.1
−7.5°.[5] Its equilibrium temperature is 2,016.1+67.0
−52.5 K.[5]
The planet was named Tanzanite by Tanzanian amateur astronomers in 2020 as part of the NameExoWorlds contest, after the mineral also known as tanzanite.[9]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b (Tanzanite) | 2.14±0.08 MJ | 0.0460±0.0006 | 2.903676±0.000008 | <0.019[10] | 85.8+2.4 −2.1° |
1.35+0.13 −0.07 RJ |
References
- 1 2 3 4 5 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- 1 2 3 Høg, E.; et al. (2000). "The Tycho-2 catalogue of the 2.5 million brightest stars". Astronomy and Astrophysics. 355: L27. Bibcode:2000A&A...355L..27H. doi:10.1888/0333750888/2862. ISBN 978-0333750889.
- 1 2 3 4 5 Smith, A. M. S.; Anderson, D. R.; Bouchy, F.; Collier Cameron, A.; Doyle, A. P.; Fumel, A.; Gillon, M.; Hébrard, G.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Moutou, C.; Pepe, F.; Pollacco, D.; Queloz, D.; Santerne, A.; Segransan, D.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2013), "WASP-71b: a bloated hot Jupiter in a 2.9-day, prograde orbit around an evolved F8 star", Astronomy & Astrophysics, 552: A120, arXiv:1211.3045, Bibcode:2013A&A...552A.120S, doi:10.1051/0004-6361/201220727, S2CID 118575479
- 1 2 Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
- 1 2 3 4 5 6 Brown, D. J. A.; Triaud, A. H. M. J.; Doyle, A. P.; Gillon, M.; Lendl, M.; Anderson, D. R.; Collier Cameron, A.; Hébrard, G.; Hellier, C.; Lovis, C.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Smalley, B. (2016), "Rossiter–McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems", Monthly Notices of the Royal Astronomical Society, 464: 810–839, arXiv:1610.00600, doi:10.1093/mnras/stw2316, S2CID 53497449
- ↑ "BD+00 316". SIMBAD. Centre de données astronomiques de Strasbourg.
- ↑ Wöllert, Maria; Brandner, Wolfgang (2015), "A Lucky Imaging search for stellar sources near 74 transit hosts", Astronomy & Astrophysics, 579: A129, arXiv:1506.05456, Bibcode:2015A&A...579A.129W, doi:10.1051/0004-6361/201526525, S2CID 118903879
- ↑ Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics, 635: A73, arXiv:2001.08224, Bibcode:2020A&A...635A..73B, doi:10.1051/0004-6361/201937127, S2CID 210861118
- 1 2 The IAU announces names for WASP exoplanets
- ↑ Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hébrard, G.; Malavolta, L.; et al. (2017), "The GAPS Programme with HARPS-N@TNG XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets", Astronomy & Astrophysics, A107: 602, arXiv:1704.00373, Bibcode:2017A&A...602A.107B, doi:10.1051/0004-6361/201629882, S2CID 118923163