| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Sn) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). Moreover, tin is not only the element with the greatest number of observationally stable isotopes, but also the element with the greatest number of theoretically stable isotopes (it is the only one element with seven theoretically stable isotopes, all other elements have at most five theoretically stable isotopes, the elements with five theoretically stable isotopes are titanium, ruthenium, xenon, and barium). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994)[4] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.
List of isotopes
Nuclide [n 1] |
Z | N | Isotopic mass (Da)[5] [n 2][n 3] |
Half-life [n 4] |
Decay mode [n 5] |
Daughter isotope [n 6] |
Spin and parity [n 7][n 4] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy[n 4] | Normal proportion | Range of variation | |||||||||||||||||
99Sn[n 8] | 50 | 49 | 98.94850(63)# | 24(4) ms | β+ (95%) | 99In | 9/2+# | ||||||||||||
β+, p (5%) | 98Cd | ||||||||||||||||||
100Sn | 50 | 50 | 99.93865(26) | 1.18(8) s | β+ (>83%) | 100In | 0+ | ||||||||||||
β+, p (<17%) | 99Cd | ||||||||||||||||||
101Sn | 50 | 51 | 100.93526(32) | 2.22(5) s | β+ | 101In | (7/2+) | ||||||||||||
β+, p? | 100Cd | ||||||||||||||||||
102Sn | 50 | 52 | 101.93029(11) | 3.8(2) s | β+ | 102In | 0+ | ||||||||||||
102mSn | 2017(2) keV | 367(8) ns | IT | 102Sn | (6+) | ||||||||||||||
103Sn | 50 | 53 | 102.92797(11)# | 7.0(2) s | β+ (98.8%) | 103In | 5/2+# | ||||||||||||
β+, p (1.2%) | 102Cd | ||||||||||||||||||
104Sn | 50 | 54 | 103.923105(6) | 20.8(5) s | β+ | 104In | 0+ | ||||||||||||
105Sn | 50 | 55 | 104.921268(4) | 32.7(5) s | β+ | 105In | (5/2+) | ||||||||||||
β+, p (0.011%) | 104Cd | ||||||||||||||||||
106Sn | 50 | 56 | 105.916957(5) | 1.92(8) min | β+ | 106In | 0+ | ||||||||||||
107Sn | 50 | 57 | 106.915714(6) | 2.90(5) min | β+ | 107In | (5/2+) | ||||||||||||
108Sn | 50 | 58 | 107.911894(6) | 10.30(8) min | β+ | 108In | 0+ | ||||||||||||
109Sn | 50 | 59 | 108.911293(9) | 18.1(2) min | β+ | 109In | 5/2+ | ||||||||||||
110Sn | 50 | 60 | 109.907845(15) | 4.154(4) h | EC | 110In | 0+ | ||||||||||||
111Sn | 50 | 61 | 110.907741(6) | 35.3(6) min | β+ | 111In | 7/2+ | ||||||||||||
111mSn | 254.71(4) keV | 12.5(10) μs | IT | 111Sn | 1/2+ | ||||||||||||||
112Sn | 50 | 62 | 111.9048249(3) | Observationally Stable[n 9] | 0+ | 0.0097(1) | |||||||||||||
113Sn | 50 | 63 | 112.9051759(17) | 115.08(4) d | β+ | 113In | 1/2+ | ||||||||||||
113mSn | 77.389(19) keV | 21.4(4) min | IT (91.1%) | 113Sn | 7/2+ | ||||||||||||||
β+ (8.9%) | 113In | ||||||||||||||||||
114Sn | 50 | 64 | 113.90278013(3) | Stable | 0+ | 0.0066(1) | |||||||||||||
114mSn | 3087.37(7) keV | 733(14) ns | IT | 114Sn | 7− | ||||||||||||||
115Sn | 50 | 65 | 114.903344696(16) | Stable | 1/2+ | 0.0034(1) | |||||||||||||
115m1Sn | 612.81(4) keV | 3.26(8) µs | 7/2+ | ||||||||||||||||
115m2Sn | 713.64(12) keV | 159(1) µs | 11/2− | ||||||||||||||||
116Sn | 50 | 66 | 115.90174283(10) | Stable | 0+ | 0.1454(9) | |||||||||||||
117Sn | 50 | 67 | 116.9029540(5) | Stable | 1/2+ | 0.0768(7) | |||||||||||||
117m1Sn | 314.58(4) keV | 13.76(4) d | IT | 117Sn | 11/2− | ||||||||||||||
117m2Sn | 2406.4(4) keV | 1.75(7) µs | (19/2+) | ||||||||||||||||
118Sn | 50 | 68 | 117.9016066(5) | Stable | 0+ | 0.2422(9) | |||||||||||||
119Sn | 50 | 69 | 118.9033113(8) | Stable | 1/2+ | 0.0859(4) | |||||||||||||
119m1Sn | 89.531(13) keV | 293.1(7) d | IT | 119Sn | 11/2− | ||||||||||||||
119m2Sn | 2127.0(10) keV | 9.6(12) µs | (19/2+) | ||||||||||||||||
120Sn | 50 | 70 | 119.9022026(10) | Stable | 0+ | 0.3258(9) | |||||||||||||
120m1Sn | 2481.63(6) keV | 11.8(5) µs | (7−) | ||||||||||||||||
120m2Sn | 2902.22(22) keV | 6.26(11) µs | (10+)# | ||||||||||||||||
121Sn[n 10] | 50 | 71 | 120.9042435(11) | 27.03(4) h | β− | 121Sb | 3/2+ | ||||||||||||
121m1Sn | 6.30(6) keV | 43.9(5) y | IT (77.6%) | 121Sn | 11/2− | ||||||||||||||
β− (22.4%) | 121Sb | ||||||||||||||||||
121m2Sn | 1998.8(9) keV | 5.3(5) µs | (19/2+)# | ||||||||||||||||
121m3Sn | 2834.6(18) keV | 0.167(25) µs | (27/2−) | ||||||||||||||||
122Sn[n 10] | 50 | 72 | 121.9034455(26) | Observationally Stable[n 11] | 0+ | 0.0463(3) | |||||||||||||
123Sn[n 10] | 50 | 73 | 122.9057271(27) | 129.2(4) d | β− | 123Sb | 11/2− | ||||||||||||
123m1Sn | 24.6(4) keV | 40.06(1) min | β− | 123Sb | 3/2+ | ||||||||||||||
123m2Sn | 1945.0(10) keV | 7.4(26) µs | (19/2+) | ||||||||||||||||
123m3Sn | 2153.0(12) keV | 6 µs | (23/2+) | ||||||||||||||||
123m4Sn | 2713.0(14) keV | 34 µs | (27/2−) | ||||||||||||||||
124Sn[n 10] | 50 | 74 | 123.9052796(14) | Observationally Stable[n 12] | 0+ | 0.0579(5) | |||||||||||||
124m1Sn | 2204.622(23) keV | 0.27(6) µs | 5- | ||||||||||||||||
124m2Sn | 2325.01(4) keV | 3.1(5) µs | 7− | ||||||||||||||||
124m3Sn | 2656.6(5) keV | 45(5) µs | (10+)# | ||||||||||||||||
125Sn[n 10] | 50 | 75 | 124.9077894(14) | 9.64(3) d | β− | 125Sb | 11/2− | ||||||||||||
125mSn | 27.50(14) keV | 9.52(5) min | β− | 125Sb | 3/2+ | ||||||||||||||
126Sn[n 13] | 50 | 76 | 125.907659(11) | 2.30(14)×105 y | β− (66.5%) | 126m2Sb | 0+ | < 10−14[6] | |||||||||||
β− (33.5%) | 126m1Sb | ||||||||||||||||||
126m1Sn | 2218.99(8) keV | 6.6(14) µs | 7− | ||||||||||||||||
126m2Sn | 2564.5(5) keV | 7.7(5) µs | (10+)# | ||||||||||||||||
127Sn | 50 | 77 | 126.910392(10) | 2.10(4) h | β− | 127Sb | (11/2−) | ||||||||||||
127mSn | 4.7(3) keV | 4.13(3) min | β− | 127Sb | (3/2+) | ||||||||||||||
128Sn | 50 | 78 | 127.910508(19) | 59.07(14) min | β− | 128Sb | 0+ | ||||||||||||
128mSn | 2091.50(11) keV | 6.5(5) s | IT | 128Sn | (7−) | ||||||||||||||
129Sn | 50 | 79 | 128.913482(19) | 2.23(4) min | β− | 129Sb | (3/2+)# | ||||||||||||
129mSn | 35.2(3) keV | 6.9(1) min | β− (99.99%) | 129Sb | (11/2−)# | ||||||||||||||
IT (.002%) | 129Sn | ||||||||||||||||||
130Sn | 50 | 80 | 129.9139745(20) | 3.72(7) min | β− | 130Sb | 0+ | ||||||||||||
130m1Sn | 1946.88(10) keV | 1.7(1) min | β− | 130Sb | (7−)# | ||||||||||||||
130m2Sn | 2434.79(12) keV | 1.61(15) µs | (10+) | ||||||||||||||||
131Sn | 50 | 81 | 130.917053(4) | 56.0(5) s | β− | 131Sb | (3/2+) | ||||||||||||
131m1Sn | 80(30)# keV | 58.4(5) s | β− (99.99%) | 131Sb | (11/2−) | ||||||||||||||
IT (.0004%) | 131Sn | ||||||||||||||||||
131m2Sn | 4846.7(9) keV | 300(20) ns | (19/2− to 23/2−) | ||||||||||||||||
132Sn | 50 | 82 | 131.9178239(21) | 39.7(8) s | β− | 132Sb | 0+ | ||||||||||||
133Sn | 50 | 83 | 132.9239138(20) | 1.45(3) s | β− (99.97%) | 133Sb | (7/2−)# | ||||||||||||
β−, n (.0294%) | 132Sb | ||||||||||||||||||
134Sn | 50 | 84 | 133.928680(3) | 1.050(11) s | β− (83%) | 134Sb | 0+ | ||||||||||||
β−, n (17%) | 133Sb | ||||||||||||||||||
135Sn | 50 | 85 | 134.934909(3) | 530(20) ms | β− | 135Sb | (7/2−) | ||||||||||||
β−, n | 134Sb | ||||||||||||||||||
136Sn | 50 | 86 | 135.93970(22)# | 0.25(3) s | β− | 136Sb | 0+ | ||||||||||||
β−, n | 135Sb | ||||||||||||||||||
137Sn | 50 | 87 | 136.94616(32)# | 190(60) ms | β− | 137Sb | 5/2−# | ||||||||||||
138Sn | 50 | 88 | 137.95114(43)# | 140 ms +30-20 | β− | 138Sb | |||||||||||||
138mSn | 1344(2) keV | 210(45) ns | |||||||||||||||||
139Sn | 50 | 89 | 138.95780(43)# | 130 ms | β− | 139Sb | |||||||||||||
140Sn | 50 | 90 | 139.96297(32)# | 50# ms [>550 ns] | β−? | 140Sb | 0+ | ||||||||||||
β−, n? | 139Sb | ||||||||||||||||||
β−, 2n? | 138Sb | ||||||||||||||||||
This table header & footer: |
- ↑ mSn – Excited nuclear isomer.
- ↑ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ↑ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- 1 2 3 # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ↑
Modes of decay:
EC: Electron capture IT: Isomeric transition n: Neutron emission p: Proton emission - ↑ Bold symbol as daughter – Daughter product is stable.
- ↑ ( ) spin value – Indicates spin with weak assignment arguments.
- ↑ Heaviest known nuclide with more protons than neutrons
- ↑ Believed to decay by β+β+ to 112Cd
- 1 2 3 4 5 Fission product
- ↑ Believed to undergo β−β− decay to 122Te
- ↑ Believed to undergo β−β− decay to 124Te with a half-life over 100×1015 years
- ↑ Long-lived fission product
Tin-117m
Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[7]
Tin-121m
Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.
In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[8]
Tin-126
Thermal | Fast | 14 MeV | |
---|---|---|---|
232Th | not fissile | 0.0481 ± 0.0077 | 0.87 ± 0.20 |
233U | 0.224 ± 0.018 | 0.278 ± 0.022 | 1.92 ± 0.31 |
235U | 0.056 ± 0.004 | 0.0137 ± 0.001 | 1.70 ± 0.14 |
238U | not fissile | 0.054 ± 0.004 | 1.31 ± 0.21 |
239Pu | 0.199 ± 0.016 | 0.26 ± 0.02 | 2.02 ± 0.22 |
241Pu | 0.082 ± 0.019 | 0.22 ± 0.03 | ? |
Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.
Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.
References
- ↑ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ↑ "Standard Atomic Weights: Tin". CIAAW. 1983.
- ↑ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ↑ K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
- ↑ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ↑ H.-T. Shen; et al. "Research on measurement of 126Sn by AMS" (PDF). accelconf.web.cern.ch.
- ↑ "https://www.nrc.gov/site-help/search.html?site=AllSites&searchtext=synovetin" (PDF).
{{cite web}}
: External link in
(help)|title=
- 1 2 M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)
- Isotope masses from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- Isotopic compositions and standard atomic masses from:
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from:
- Audi, Georges; Bersillon, Olivier; Blachot, Jean; Wapstra, Aaldert Hendrik (2003), "The NUBASE evaluation of nuclear and decay properties", Nuclear Physics A, 729: 3–128, Bibcode:2003NuPhA.729....3A, doi:10.1016/j.nuclphysa.2003.11.001
- National Nuclear Data Center. "NuDat 2.x database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.