Isotopes of tin (50Sn)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
112Sn 0.970% stable
114Sn 0.66% stable
115Sn 0.34% stable
116Sn 14.5% stable
117Sn 7.68% stable
118Sn 24.2% stable
119Sn 8.59% stable
120Sn 32.6% stable
122Sn 4.63% stable
124Sn 5.79% stable
126Sn trace 2.3×105 y β 126Sb
Standard atomic weight Ar°(Sn)
  • 118.710±0.007
  • 118.71±0.01 (abridged)[2][3]

Tin (50Sn) is the element with the greatest number of stable isotopes (ten; three of them are potentially radioactive but have not been observed to decay). Moreover, tin is not only the element with the greatest number of observationally stable isotopes, but also the element with the greatest number of theoretically stable isotopes (it is the only one element with seven theoretically stable isotopes, all other elements have at most five theoretically stable isotopes, the elements with five theoretically stable isotopes are titanium, ruthenium, xenon, and barium). This is probably related to the fact that 50 is a "magic number" of protons. In addition, twenty-nine unstable tin isotopes are known, including tin-100 (100Sn) (discovered in 1994)[4] and tin-132 (132Sn), which are both "doubly magic". The longest-lived tin radioisotope is tin-126 (126Sn), with a half-life of 230,000 years. The other 28 radioisotopes have half-lives of less than a year.

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)[5]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7][n 4]
Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
99Sn[n 8] 50 49 98.94850(63)# 24(4) ms β+ (95%) 99In 9/2+#
β+, p (5%) 98Cd
100Sn 50 50 99.93865(26) 1.18(8) s β+ (>83%) 100In 0+
β+, p (<17%) 99Cd
101Sn 50 51 100.93526(32) 2.22(5) s β+ 101In (7/2+)
β+, p? 100Cd
102Sn 50 52 101.93029(11) 3.8(2) s β+ 102In 0+
102mSn 2017(2) keV 367(8) ns IT 102Sn (6+)
103Sn 50 53 102.92797(11)# 7.0(2) s β+ (98.8%) 103In 5/2+#
β+, p (1.2%) 102Cd
104Sn 50 54 103.923105(6) 20.8(5) s β+ 104In 0+
105Sn 50 55 104.921268(4) 32.7(5) s β+ 105In (5/2+)
β+, p (0.011%) 104Cd
106Sn 50 56 105.916957(5) 1.92(8) min β+ 106In 0+
107Sn 50 57 106.915714(6) 2.90(5) min β+ 107In (5/2+)
108Sn 50 58 107.911894(6) 10.30(8) min β+ 108In 0+
109Sn 50 59 108.911293(9) 18.1(2) min β+ 109In 5/2+
110Sn 50 60 109.907845(15) 4.154(4) h EC 110In 0+
111Sn 50 61 110.907741(6) 35.3(6) min β+ 111In 7/2+
111mSn 254.71(4) keV 12.5(10) μs IT 111Sn 1/2+
112Sn 50 62 111.9048249(3) Observationally Stable[n 9] 0+ 0.0097(1)
113Sn 50 63 112.9051759(17) 115.08(4) d β+ 113In 1/2+
113mSn 77.389(19) keV 21.4(4) min IT (91.1%) 113Sn 7/2+
β+ (8.9%) 113In
114Sn 50 64 113.90278013(3) Stable 0+ 0.0066(1)
114mSn 3087.37(7) keV 733(14) ns IT 114Sn 7−
115Sn 50 65 114.903344696(16) Stable 1/2+ 0.0034(1)
115m1Sn 612.81(4) keV 3.26(8) µs 7/2+
115m2Sn 713.64(12) keV 159(1) µs 11/2−
116Sn 50 66 115.90174283(10) Stable 0+ 0.1454(9)
117Sn 50 67 116.9029540(5) Stable 1/2+ 0.0768(7)
117m1Sn 314.58(4) keV 13.76(4) d IT 117Sn 11/2−
117m2Sn 2406.4(4) keV 1.75(7) µs (19/2+)
118Sn 50 68 117.9016066(5) Stable 0+ 0.2422(9)
119Sn 50 69 118.9033113(8) Stable 1/2+ 0.0859(4)
119m1Sn 89.531(13) keV 293.1(7) d IT 119Sn 11/2−
119m2Sn 2127.0(10) keV 9.6(12) µs (19/2+)
120Sn 50 70 119.9022026(10) Stable 0+ 0.3258(9)
120m1Sn 2481.63(6) keV 11.8(5) µs (7−)
120m2Sn 2902.22(22) keV 6.26(11) µs (10+)#
121Sn[n 10] 50 71 120.9042435(11) 27.03(4) h β 121Sb 3/2+
121m1Sn 6.30(6) keV 43.9(5) y IT (77.6%) 121Sn 11/2−
β (22.4%) 121Sb
121m2Sn 1998.8(9) keV 5.3(5) µs (19/2+)#
121m3Sn 2834.6(18) keV 0.167(25) µs (27/2−)
122Sn[n 10] 50 72 121.9034455(26) Observationally Stable[n 11] 0+ 0.0463(3)
123Sn[n 10] 50 73 122.9057271(27) 129.2(4) d β 123Sb 11/2−
123m1Sn 24.6(4) keV 40.06(1) min β 123Sb 3/2+
123m2Sn 1945.0(10) keV 7.4(26) µs (19/2+)
123m3Sn 2153.0(12) keV 6 µs (23/2+)
123m4Sn 2713.0(14) keV 34 µs (27/2−)
124Sn[n 10] 50 74 123.9052796(14) Observationally Stable[n 12] 0+ 0.0579(5)
124m1Sn 2204.622(23) keV 0.27(6) µs 5-
124m2Sn 2325.01(4) keV 3.1(5) µs 7−
124m3Sn 2656.6(5) keV 45(5) µs (10+)#
125Sn[n 10] 50 75 124.9077894(14) 9.64(3) d β 125Sb 11/2−
125mSn 27.50(14) keV 9.52(5) min β 125Sb 3/2+
126Sn[n 13] 50 76 125.907659(11) 2.30(14)×105 y β (66.5%) 126m2Sb 0+ < 10−14[6]
β (33.5%) 126m1Sb
126m1Sn 2218.99(8) keV 6.6(14) µs 7−
126m2Sn 2564.5(5) keV 7.7(5) µs (10+)#
127Sn 50 77 126.910392(10) 2.10(4) h β 127Sb (11/2−)
127mSn 4.7(3) keV 4.13(3) min β 127Sb (3/2+)
128Sn 50 78 127.910508(19) 59.07(14) min β 128Sb 0+
128mSn 2091.50(11) keV 6.5(5) s IT 128Sn (7−)
129Sn 50 79 128.913482(19) 2.23(4) min β 129Sb (3/2+)#
129mSn 35.2(3) keV 6.9(1) min β (99.99%) 129Sb (11/2−)#
IT (.002%) 129Sn
130Sn 50 80 129.9139745(20) 3.72(7) min β 130Sb 0+
130m1Sn 1946.88(10) keV 1.7(1) min β 130Sb (7−)#
130m2Sn 2434.79(12) keV 1.61(15) µs (10+)
131Sn 50 81 130.917053(4) 56.0(5) s β 131Sb (3/2+)
131m1Sn 80(30)# keV 58.4(5) s β (99.99%) 131Sb (11/2−)
IT (.0004%) 131Sn
131m2Sn 4846.7(9) keV 300(20) ns (19/2− to 23/2−)
132Sn 50 82 131.9178239(21) 39.7(8) s β 132Sb 0+
133Sn 50 83 132.9239138(20) 1.45(3) s β (99.97%) 133Sb (7/2−)#
β, n (.0294%) 132Sb
134Sn 50 84 133.928680(3) 1.050(11) s β (83%) 134Sb 0+
β, n (17%) 133Sb
135Sn 50 85 134.934909(3) 530(20) ms β 135Sb (7/2−)
β, n 134Sb
136Sn 50 86 135.93970(22)# 0.25(3) s β 136Sb 0+
β, n 135Sb
137Sn 50 87 136.94616(32)# 190(60) ms β 137Sb 5/2−#
138Sn 50 88 137.95114(43)# 140 ms +30-20 β 138Sb
138mSn 1344(2) keV 210(45) ns
139Sn 50 89 138.95780(43)# 130 ms β 139Sb
140Sn 50 90 139.96297(32)# 50# ms [>550 ns] β? 140Sb 0+
β, n? 139Sb
β, 2n? 138Sb
This table header & footer:
  1. mSn  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 3 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC:Electron capture
    IT:Isomeric transition
    n:Neutron emission
    p:Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Heaviest known nuclide with more protons than neutrons
  9. Believed to decay by β+β+ to 112Cd
  10. 1 2 3 4 5 Fission product
  11. Believed to undergo ββ decay to 122Te
  12. Believed to undergo ββ decay to 124Te with a half-life over 100×1015 years
  13. Long-lived fission product

Tin-117m

Tin-117m is a radioisotope of tin. One of its uses is in a particulate suspension to treat canine synovitis (radiosynoviorthesis).[7]

Tin-121m

Tin-121m (121mSn) is a radioisotope and nuclear isomer of tin with a half-life of 43.9 years.

In a normal thermal reactor, it has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce tin-121 at higher yields. For example, its yield from uranium-235 is 0.0007% per thermal fission and 0.002% per fast fission.[8]

Tin-126

Yield, % per fission[8]
Thermal Fast 14 MeV
232Th not fissile 0.0481 ± 0.0077 0.87 ± 0.20
233U 0.224 ± 0.018 0.278 ± 0.022 1.92 ± 0.31
235U 0.056 ± 0.004 0.0137 ± 0.001 1.70 ± 0.14
238U not fissile 0.054 ± 0.004 1.31 ± 0.21
239Pu 0.199 ± 0.016 0.26 ± 0.02 2.02 ± 0.22
241Pu 0.082 ± 0.019 0.22 ± 0.03  ?

Tin-126 is a radioisotope of tin and one of the only seven long-lived fission products of uranium and plutonium. While tin-126's half-life of 230,000 years translates to a low specific activity of gamma radiation, its short-lived decay products, two isomers of antimony-126, emit 17 and 40 keV gamma radiation and a 3.67 MeV beta particle on their way to stable tellurium-126, making external exposure to tin-126 a potential concern.

Tin-126 is in the middle of the mass range for fission products. Thermal reactors, which make up almost all current nuclear power plants, produce it at a very low yield (0.056% for 235U), since slow neutrons almost always fission 235U or 239Pu into unequal halves. Fast fission in a fast reactor or nuclear weapon, or fission of some heavy minor actinides such as californium, will produce it at higher yields.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Tin". CIAAW. 1983.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; et al. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. K. Sümmerer; R. Schneider; T Faestermann; J. Friese; H. Geissel; R. Gernhäuser; H. Gilg; F. Heine; J. Homolka; P. Kienle; H. J. Körner; G. Münzenberg; J. Reinhold; K. Zeitelhack (April 1997). "Identification and decay spectroscopy of 100Sn at the GSI projectile fragment separator FRS". Nuclear Physics A. 616 (1–2): 341–345. Bibcode:1997NuPhA.616..341S. doi:10.1016/S0375-9474(97)00106-1.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. H.-T. Shen; et al. "Research on measurement of 126Sn by AMS" (PDF). accelconf.web.cern.ch.
  7. "https://www.nrc.gov/site-help/search.html?site=AllSites&searchtext=synovetin" (PDF). {{cite web}}: External link in |title= (help)
  8. 1 2 M. B. Chadwick et al, "Evaluated Nuclear Data File (ENDF) : ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields, and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at https://www-nds.iaea.org/exfor/endf.htm)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.