Thrust-specific fuel consumption (TSFC) is the fuel efficiency of an engine design with respect to thrust output. TSFC may also be thought of as fuel consumption (grams/second) per unit of thrust (newtons, or N), hence thrust-specific. This figure is inversely proportional to specific impulse, which is the amount of thrust produced per unit fuel consumed.

TSFC or SFC for thrust engines (e.g. turbojets, turbofans, ramjets, rockets, etc.) is the mass of fuel needed to provide the net thrust for a given period e.g. lb/(h·lbf) (pounds of fuel per hour-pound of thrust) or g/(s·kN) (grams of fuel per second-kilonewton). Mass of fuel is used, rather than volume (gallons or litres) for the fuel measure, since it is independent of temperature.[1]

Specific fuel consumption of air-breathing jet engines at their maximum efficiency is more or less proportional to exhaust speed. The fuel consumption per mile or per kilometre is a more appropriate comparison for aircraft that travel at very different speeds. There also exists power-specific fuel consumption, which equals the thrust-specific fuel consumption divided by speed. It can have units of pounds per hour per horsepower.

Significance of SFC

SFC is dependent on engine design, but differences in the SFC between different engines using the same underlying technology tend to be quite small. Increasing overall pressure ratio on jet engines tends to decrease SFC.

In practical applications, other factors are usually highly significant in determining the fuel efficiency of a particular engine design in that particular application. For instance, in aircraft, turbine (jet and turboprop) engines are typically much smaller and lighter than equivalently powerful piston engine designs, both properties reducing the levels of drag on the plane and reducing the amount of power needed to move the aircraft. Therefore, turbines are more efficient for aircraft propulsion than might be indicated by a simplistic look at the table below.

SFC varies with throttle setting, altitude, climate. For jet engines, air flight speed is an important factor too. Air flight speed counteracts the jet's exhaust speed. (In an artificial and extreme case with the aircraft flying exactly at the exhaust speed, one can easily imagine why the jet's net thrust should be near zero.) Moreover, since work is force (i.e., thrust) times distance, mechanical power is force times speed. Thus, although the nominal SFC is a useful measure of fuel efficiency, it should be divided by speed when comparing engines at different speeds.

For example, Concorde cruised at 1354 mph, or 7.15 million feet per hour, with its engines giving an SFC of 1.195 lb/(lbf·h) (see below); this means the engines transferred 5.98 million foot pounds per pound of fuel (17.9 MJ/kg), equivalent to an SFC of 0.50 lb/(lbf·h) for a subsonic aircraft flying at 570 mph, which would be better than even modern engines; the Olympus 593 used in the Concorde was the world's most efficient jet engine.[2][3] However, Concorde ultimately has a heavier airframe and, due to being supersonic, is less aerodynamically efficient, i.e., the lift to drag ratio is far lower. In general, the total fuel burn of a complete aircraft is of far more importance to the customer.

Units

Specific impulse
(by weight)
Specific impulse
(by mass)
Effective
exhaust velocity
Specific fuel consumption
SI =X seconds =9.8066 X N·s/kg =9.8066 X m/s =101,972 (1/X) g/(kN·s) / {g/(kN·s)=s/m}
Imperial units =X seconds =X lbf·s/lb =32.16 X ft/s =3,600 (1/X) lb/(lbf·h)

Typical values of SFC for thrust engines

Rocket engines in vacuum
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
Merlin 1Dliquid fuel2013Falcon 9 12 330 310 3000
Avio P80solid fuel2006Vega stage 1 13 360 280 2700
Avio Zefiro 23solid fuel2006Vega stage 2 12.52 354.7 287.5 2819
Avio Zefiro 9Asolid fuel2008Vega stage 3 12.20 345.4 295.2 2895
RD-843liquid fuelVega upper stage 11.41 323.2 315.5 3094
Kuznetsov NK-33liquid fuel1970sN-1F, Soyuz-2-1v stage 1 10.9 308 331[4] 3250
NPO Energomash RD-171Mliquid fuelZenit-2M, -3SL, -3SLB, -3F stage 1 10.7 303 337 3300
LE-7AcryogenicH-IIA, H-IIB stage 1 8.22 233 438 4300
Snecma HM-7BcryogenicAriane 2, 3, 4, 5 ECA upper stage 8.097 229.4 444.6 4360
LE-5B-2cryogenicH-IIA, H-IIB upper stage 8.05 228 447 4380
Aerojet Rocketdyne RS-25cryogenic1981Space Shuttle, SLS stage 1 7.95 225 453[5] 4440
Aerojet Rocketdyne RL-10B-2cryogenicDelta III, Delta IV, SLS upper stage 7.734 219.1 465.5 4565
NERVA NRX A6nuclear 1967 869
Jet engines with Reheat, static, sea level
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
Turbo-Union RB.199turbofanTornado 2.5[6] 70.8 1440 14120
GE F101-GE-102turbofan1970sB-1B 2.46 70 1460 14400
Tumansky R-25-300turbojetMIG-21bis 2.206[6] 62.5 1632 16000
GE J85-GE-21turbojetF-5E/F 2.13[6] 60.3 1690 16570
GE F110-GE-132turbofanF-16E/F 2.09[6] 59.2 1722 16890
Honeywell/ITEC F125turbofanF-CK-1 2.06[6] 58.4 1748 17140
Snecma M53-P2turbofanMirage 2000C/D/N 2.05[6] 58.1 1756 17220
Snecma Atar 09CturbojetMirage III 2.03[6] 57.5 1770 17400
Snecma Atar 09K-50turbojetMirage IV, 50, F1 1.991[6] 56.4 1808 17730
GE J79-GE-15turbojetF-4E/EJ/F/G, RF-4E 1.965 55.7 1832 17970
Saturn AL-31FturbofanSu-27/P/K 1.96[7] 55.5 1837 18010
GE F110-GE-129turbofanF-16C/D, F-15EX 1.9[6] 53.8 1895 18580
Soloviev D-30F6turbofanMiG-31, S-37/Su-47 1.863[6] 52.8 1932 18950
Lyulka AL-21F-3turbojetSu-17, Su-22 1.86[6] 52.7 1935 18980
Klimov RD-33turbofan1974MiG-29 1.85 52.4 1946 19080
Saturn AL-41F-1SturbofanSu-35S/T-10BM 1.819 51.5 1979 19410
Volvo RM12turbofan1978Gripen A/B/C/D 1.78[6] 50.4 2022 19830
GE F404-GE-402turbofanF/A-18C/D 1.74[6] 49 2070 20300
Kuznetsov NK-32turbofan1980Tu-144LL, Tu-160 1.7 48 2100 21000
Snecma M88-2turbofan1989Rafale 1.663 47.11 2165 21230
Eurojet EJ200turbofan1991Eurofighter 1.66–1.73 47–49[8] 2080–2170 20400–21300
Dry jet engines, static, sea level
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
GE J85-GE-21turbojetF-5E/F 1.24[6] 35.1 2900 28500
Snecma Atar 09CturbojetMirage III 1.01[6] 28.6 3560 35000
Snecma Atar 09K-50turbojetMirage IV, 50, F1 0.981[6] 27.8 3670 36000
Snecma Atar 08K-50turbojetSuper Étendard 0.971[6] 27.5 3710 36400
Tumansky R-25-300turbojetMIG-21bis 0.961[6] 27.2 3750 36700
Lyulka AL-21F-3turbojetSu-17, Su-22 0.86 24.4 4190 41100
GE J79-GE-15turbojetF-4E/EJ/F/G, RF-4E 0.85 24.1 4240 41500
Snecma M53-P2turbofanMirage 2000C/D/N 0.85[6] 24.1 4240 41500
Volvo RM12turbofan1978Gripen A/B/C/D 0.824[6] 23.3 4370 42800
RR Turbomeca Adourturbofan1999Jaguar retrofit 0.81 23 4400 44000
Honeywell/ITEC F124turbofan1979L-159, X-45 0.81[6] 22.9 4440 43600
Honeywell/ITEC F125turbofanF-CK-1 0.8[6] 22.7 4500 44100
PW J52-P-408turbojetA-4M/N, TA-4KU, EA-6B 0.79 22.4 4560 44700
Saturn AL-41F-1SturbofanSu-35S/T-10BM 0.79 22.4 4560 44700
Snecma M88-2turbofan1989Rafale 0.782 22.14 4600 45100
Klimov RD-33turbofan1974MiG-29 0.77 21.8 4680 45800
RR Pegasus 11-61turbofanAV-8B+ 0.76 21.5 4740 46500
Eurojet EJ200turbofan1991Eurofighter 0.74–0.81 21–23[8] 4400–4900 44000–48000
GE F414-GE-400turbofan1993F/A-18E/F 0.724[9] 20.5 4970 48800
Kuznetsov NK-32turbofan1980Tu-144LL, Tu-160 0.72-0.73 20–21 4900–5000 48000–49000
Soloviev D-30F6turbofanMiG-31, S-37/Su-47 0.716[6] 20.3 5030 49300
Snecma Larzacturbofan1972Alpha Jet 0.716 20.3 5030 49300
IHI F3turbofan1981Kawasaki T-4 0.7 19.8 5140 50400
Saturn AL-31FturbofanSu-27 /P/K 0.666-0.78[7][9] 18.9–22.1 4620–5410 45300–53000
RR Spey RB.168turbofanAMX 0.66[6] 18.7 5450 53500
GE F110-GE-129turbofanF-16C/D, F-15 0.64[9] 18 5600 55000
GE F110-GE-132turbofanF-16E/F 0.64[9] 18 5600 55000
Turbo-Union RB.199turbofanTornado ECR 0.637[6] 18.0 5650 55400
PW F119-PW-100turbofan1992F-22 0.61[9] 17.3 5900 57900
Turbo-Union RB.199turbofanTornado 0.598[6] 16.9 6020 59000
GE F101-GE-102turbofan1970sB-1B 0.562 15.9 6410 62800
PW TF33-P-3turbofanB-52H, NB-52H 0.52[6] 14.7 6920 67900
RR AE 3007HturbofanRQ-4, MQ-4C 0.39[6] 11.0 9200 91000
GE F118-GE-100turbofan1980sB-2 0.375[6] 10.6 9600 94000
GE F118-GE-101turbofan1980sU-2S 0.375[6] 10.6 9600 94000
CFM CF6-50C2turbofanA300, DC-10-30 0.371[6] 10.5 9700 95000
GE TF34-GE-100turbofanA-10 0.37[6] 10.5 9700 95000
CFM CFM56-2B1turbofanC-135, RC-135 0.36[10] 10 10000 98000
Progress D-18Tturbofan1980An-124, An-225 0.345 9.8 10400 102000
PW F117-PW-100turbofanC-17 0.34[11] 9.6 10600 104000
PW PW2040turbofanBoeing 757 0.33[11] 9.3 10900 107000
CFM CFM56-3C1turbofan737 Classic 0.33 9.3 11000 110000
GE CF6-80C2turbofan744, 767, MD-11, A300/310, C-5M 0.307-0.344 8.7–9.7 10500–11700 103000–115000
EA GP7270turbofanA380-861 0.299[9] 8.5 12000 118000
GE GE90-85Bturbofan777-200/200ER/300 0.298[9] 8.44 12080 118500
GE GE90-94Bturbofan777-200/200ER/300 0.2974[9] 8.42 12100 118700
RR Trent 970-84turbofan2003A380-841 0.295[9] 8.36 12200 119700
GE GEnx-1B70turbofan787-8 0.2845[9] 8.06 12650 124100
RR Trent 1000Cturbofan2006787-9 0.273[9] 7.7 13200 129000
Jet engines, cruise
Model Type First
run
Application TSFC Isp (by weight) Isp (by weight)
lb/lbf·h g/kN·s s m/s
Ramjet Mach 1 4.5 130 800 7800
J-58turbojet1958SR-71 at Mach 3.2 (Reheat) 1.9[6] 53.8 1895 18580
RR/Snecma Olympusturbojet1966Concorde at Mach 2 1.195[12] 33.8 3010 29500
PW JT8D-9turbofan737 Original 0.8[13] 22.7 4500 44100
Honeywell ALF502R-5GTFBAe 146 0.72[11] 20.4 5000 49000
Soloviev D-30KP-2turbofanIl-76, Il-78 0.715 20.3 5030 49400
Soloviev D-30KU-154turbofanTu-154M 0.705 20.0 5110 50100
RR Tay RB.183turbofan1984Fokker 70, Fokker 100 0.69 19.5 5220 51200
GE CF34-3turbofan1982Challenger, CRJ100/200 0.69 19.5 5220 51200
GE CF34-8EturbofanE170/175 0.68 19.3 5290 51900
Honeywell TFE731-60GTFFalcon 900 0.679[14] 19.2 5300 52000
CFM CFM56-2C1turbofanDC-8 Super 70 0.671[11] 19.0 5370 52600
GE CF34-8CturbofanCRJ700/900/1000 0.67-0.68 19–19 5300–5400 52000–53000
CFM CFM56-3C1turbofan737 Classic 0.667 18.9 5400 52900
CFM CFM56-2A2turbofan1974E-3, E-6 0.66[10] 18.7 5450 53500
RR BR725turbofan2008G650/ER 0.657 18.6 5480 53700
CFM CFM56-2B1turbofanC-135, RC-135 0.65[10] 18.4 5540 54300
GE CF34-10AturbofanARJ21 0.65 18.4 5540 54300
CFE CFE738-1-1Bturbofan1990Falcon 2000 0.645[11] 18.3 5580 54700
RR BR710turbofan1995G. V/G550, Global Express 0.64 18 5600 55000
GE CF34-10EturbofanE190/195 0.64 18 5600 55000
CFM CF6-50C2turbofanA300B2/B4/C4/F4, DC-10-30 0.63[11] 17.8 5710 56000
PowerJet SaM146turbofanSuperjet LR 0.629 17.8 5720 56100
CFM CFM56-7B24turbofan737 NG 0.627[11] 17.8 5740 56300
RR BR715turbofan1997717 0.62 17.6 5810 56900
GE CF6-80C2-B1Fturbofan747-400 0.605[12] 17.1 5950 58400
CFM CFM56-5A1turbofanA320 0.596 16.9 6040 59200
Aviadvigatel PS-90A1turbofanIl-96-400 0.595 16.9 6050 59300
PW PW2040turbofan757-200 0.582[11] 16.5 6190 60700
PW PW4098turbofan777-300 0.581[11] 16.5 6200 60800
GE CF6-80C2-B2turbofan767 0.576[11] 16.3 6250 61300
IAE V2525-D5turbofanMD-90 0.574[15] 16.3 6270 61500
IAE V2533-A5turbofanA321-231 0.574[15] 16.3 6270 61500
RR Trent 700turbofan1992A330 0.562[16] 15.9 6410 62800
RR Trent 800turbofan1993777-200/200ER/300 0.560[16] 15.9 6430 63000
Progress D-18Tturbofan1980An-124, An-225 0.546 15.5 6590 64700
CFM CFM56-5B4turbofanA320-214 0.545 15.4 6610 64800
CFM CFM56-5C2turbofanA340-211 0.545 15.4 6610 64800
RR Trent 500turbofan1999A340-500/600 0.542[16] 15.4 6640 65100
CFM LEAP-1Bturbofan2014737 MAX 0.53-0.56 15–16 6400–6800 63000–67000
Aviadvigatel PD-14turbofan2014MC-21-310 0.526 14.9 6840 67100
RR Trent 900turbofan2003A380 0.522[16] 14.8 6900 67600
GE GE90-85Bturbofan777-200/200ER 0.52[11][17] 14.7 6920 67900
GE GEnx-1B76turbofan2006787-10 0.512[13] 14.5 7030 69000
PW PW1400GGTFMC-21 0.51[18] 14.4 7100 69000
CFM LEAP-1Cturbofan2013C919 0.51 14.4 7100 69000
CFM LEAP-1Aturbofan2013A320neo family 0.51[18] 14.4 7100 69000
RR Trent 7000turbofan2015A330neo 0.506[lower-alpha 1] 14.3 7110 69800
RR Trent 1000turbofan2006787 0.506[lower-alpha 2] 14.3 7110 69800
RR Trent XWB-97turbofan2014A350-1000 0.478[lower-alpha 3] 13.5 7530 73900
PW 1127GGTF2012A320neo 0.463[13] 13.1 7780 76300
Civil engines[19]
ModelSL thrustBPROPR SL SFCcruise SFCWeight Layoutcost ($M)Introduction
GE GE9090,000 lbf
400 kN
8.439.3 0.545 lb/(lbf⋅h)
15.4 g/(kN⋅s)
16,644 lb
7,550 kg
1+3LP 10HP
2HP 6LP
111995
RR Trent71,100–91,300 lbf
316–406 kN
4.89-5.7436.84-42.7 0.557–0.565 lb/(lbf⋅h)
15.8–16.0 g/(kN⋅s)
10,550–13,133 lb
4,785–5,957 kg
1LP 8IP 6HP
1HP 1IP 4/5LP
11-11.71995
PW400052,000–84,000 lbf
230–370 kN
4.85-6.4127.5-34.2 0.348–0.359 lb/(lbf⋅h)
9.9–10.2 g/(kN⋅s)
9,400–14,350 lb
4,260–6,510 kg
1+4-6LP 11HP
2HP 4-7LP
6.15-9.441986-1994
RB21143,100–60,600 lbf
192–270 kN
4.3025.8-33 0.570–0.598 lb/(lbf⋅h)
16.1–16.9 g/(kN⋅s)
7,264–9,670 lb
3,295–4,386 kg
1LP 6/7IP 6HP
1HP 1IP 3LP
5.3-6.81984-1989
GE CF652,500–67,500 lbf
234–300 kN
4.66-5.3127.1-32.4 0.32–0.35 lb/(lbf⋅h)
9.1–9.9 g/(kN⋅s)
0.562–0.623 lb/(lbf⋅h)
15.9–17.6 g/(kN⋅s)
8,496–10,726 lb
3,854–4,865 kg
1+3/4LP 14HP
2HP 4/5LP
5.9-71981-1987
D-1851,660 lbf
229.8 kN
5.6025.0 0.570 lb/(lbf⋅h)
16.1 g/(kN⋅s)
9,039 lb
4,100 kg
1LP 7IP 7HP
1HP 1IP 4LP
1982
PW200038,250 lbf
170.1 kN
631.8 0.33 lb/(lbf⋅h)
9.3 g/(kN⋅s)
0.582 lb/(lbf⋅h)
16.5 g/(kN⋅s)
7,160 lb
3,250 kg
1+4LP 11HP
2HP 5LP
41983
PS-9035,275 lbf
156.91 kN
4.6035.5 0.595 lb/(lbf⋅h)
16.9 g/(kN⋅s)
6,503 lb
2,950 kg
1+2LP 13HP
2 HP 4LP
1992
IAE V250022,000–33,000 lbf
98–147 kN
4.60-5.4024.9-33.40 0.34–0.37 lb/(lbf⋅h)
9.6–10.5 g/(kN⋅s)
0.574–0.581 lb/(lbf⋅h)
16.3–16.5 g/(kN⋅s)
5,210–5,252 lb
2,363–2,382 kg
1+4LP 10HP
2HP 5LP
1989-1994
CFM5620,600–31,200 lbf
92–139 kN
4.80-6.4025.70-31.50 0.32–0.36 lb/(lbf⋅h)
9.1–10.2 g/(kN⋅s)
0.545–0.667 lb/(lbf⋅h)
15.4–18.9 g/(kN⋅s)
4,301–5,700 lb
1,951–2,585 kg
1+3/4LP 9HP
1HP 4/5LP
3.20-4.551986-1997
D-3023,850 lbf
106.1 kN
2.42 0.700 lb/(lbf⋅h)
19.8 g/(kN⋅s)
5,110 lb
2,320 kg
1+3LP 11HP
2HP 4LP
1982
JT8D21,700 lbf
97 kN
1.7719.2 0.519 lb/(lbf⋅h)
14.7 g/(kN⋅s)
0.737 lb/(lbf⋅h)
20.9 g/(kN⋅s)
4,515 lb
2,048 kg
1+6LP 7HP
1HP 3LP
2.991986
BR70014,845–19,883 lbf
66.03–88.44 kN
4.00-4.7025.7-32.1 0.370–0.390 lb/(lbf⋅h)
10.5–11.0 g/(kN⋅s)
0.620–0.640 lb/(lbf⋅h)
17.6–18.1 g/(kN⋅s)
3,520–4,545 lb
1,597–2,062 kg
1+1/2LP 10HP
2HP 2/3LP
1996
D-43616,865 lbf
75.02 kN
4.9525.2 0.610 lb/(lbf⋅h)
17.3 g/(kN⋅s)
3,197 lb
1,450 kg
1+1L 6I 7HP
1HP 1IP 3LP
1996
RR Tay13,850–15,400 lbf
61.6–68.5 kN
3.04-3.0715.8-16.6 0.43–0.45 lb/(lbf⋅h)
12–13 g/(kN⋅s)
0.690 lb/(lbf⋅h)
19.5 g/(kN⋅s)
2,951–3,380 lb
1,339–1,533 kg
1+3LP 12HP
2HP 3LP
2.61988-1992
RR Spey9,900–11,400 lbf
44–51 kN
0.64-0.7115.5-18.4 0.56 lb/(lbf⋅h)
16 g/(kN⋅s)
0.800 lb/(lbf⋅h)
22.7 g/(kN⋅s)
2,287–2,483 lb
1,037–1,126 kg
4/5LP 12HP
2HP 2LP
1968-1969
GE CF349,220 lbf
41.0 kN
21 0.35 lb/(lbf⋅h)
9.9 g/(kN⋅s)
1,670 lb
760 kg
1F 14HP
2HP 4LP
1996
AE30077,150 lbf
31.8 kN
24.0 0.390 lb/(lbf⋅h)
11.0 g/(kN⋅s)
1,581 lb
717 kg
ALF502/LF5076,970–7,000 lbf
31.0–31.1 kN
5.60-5.7012.2-13.8 0.406–0.408 lb/(lbf⋅h)
11.5–11.6 g/(kN⋅s)
0.414–0.720 lb/(lbf⋅h)
11.7–20.4 g/(kN⋅s)
1,336–1,385 lb
606–628 kg
1+2L 7+1HP
2HP 2LP
1.661982-1991
CFE7385,918 lbf
26.32 kN
5.3023.0 0.369 lb/(lbf⋅h)
10.5 g/(kN⋅s)
0.645 lb/(lbf⋅h)
18.3 g/(kN⋅s)
1,325 lb
601 kg
1+5LP+1CF
2HP 3LP
1992
PW3005,266 lbf
23.42 kN
4.5023.0 0.391 lb/(lbf⋅h)
11.1 g/(kN⋅s)
0.675 lb/(lbf⋅h)
19.1 g/(kN⋅s)
993 lb
450 kg
1+4LP+1HP
2HP 3LP
1990
JT15D3,045 lbf
13.54 kN
3.3013.1 0.560 lb/(lbf⋅h)
15.9 g/(kN⋅s)
0.541 lb/(lbf⋅h)
15.3 g/(kN⋅s)
632 lb
287 kg
1+1LP+1CF
1HP 2LP
1983
WI FJ44-4A1,900 lbf
8.5 kN
0.456 lb/(lbf⋅h)
12.9 g/(kN⋅s)
445 lb
202 kg
1+1L 1C 1H
1HP 2LP
1992
WI FJ33-5A 1,000–1,800 lbf
4.4–8.0 kN
0.486 lb/(lbf⋅h)
13.8 g/(kN⋅s)
300 lb
140 kg
2016

The following table gives the efficiency for several engines when running at 80% throttle, which is approximately what is used in cruising, giving a minimum SFC. The efficiency is the amount of power propelling the plane divided by the rate of energy consumption. Since the power equals thrust times speed, the efficiency is given by

where V is speed and h is the energy content per unit mass of fuel (the higher heating value is used here, and at higher speeds the kinetic energy of the fuel or propellant becomes substantial and must be included).

typical subsonic cruise, 80% throttle, min SFC[20]
Turbofanefficiency
GE9036.1%
PW400034.8%
PW203735.1% (M.87 40K)
PW203733.5% (M.80 35K)
CFM56-230.5%
TFE731-223.4%

See also

  • Brake specific fuel consumption – Measure of the fuel efficiency of internal combustion engines
  • Energies per unit mass – Energy per volume
  • Specific impulse – Change in velocity per amount of fuel
  • Vehicle metrics – Metrics that denote the relative capabilities of various vehicles

Notes

  1. 10% better than Trent 700
  2. 10% better than Trent 700
  3. 15 per cent fuel consumption advantage over the original Trent engine

References

  1. Specific Fuel Consumption.
  2. Supersonic Dream
  3. "The turbofan engine Archived 2015-04-18 at the Wayback Machine", page 5. SRM Institute of Science and Technology, Department of aerospace engineering
  4. "NK33". Encyclopedia Astronautica.
  5. "SSME". Encyclopedia Astronautica.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 Nathan Meier (21 Mar 2005). "Military Turbojet/Turbofan Specifications". Archived from the original on 11 February 2021.
  7. 1 2 "Flanker". AIR International Magazine. 23 March 2017.
  8. 1 2 "EJ200 turbofan engine" (PDF). MTU Aero Engines. April 2016.
  9. 1 2 3 4 5 6 7 8 9 10 11 Kottas, Angelos T.; Bozoudis, Michail N.; Madas, Michael A. "Turbofan Aero-Engine Efficiency Evaluation: An Integrated Approach Using VSBM Two-Stage Network DEA" (PDF). doi:10.1016/j.omega.2019.102167.
  10. 1 2 3 Élodie Roux (2007). "Turbofan and Turbojet Engines: Database Handbook" (PDF). p. 126. ISBN 9782952938013.
  11. 1 2 3 4 5 6 7 8 9 10 11 Nathan Meier (3 Apr 2005). "Civil Turbojet/Turbofan Specifications". Archived from the original on 17 August 2021.
  12. 1 2 Ilan Kroo. "Data on Large Turbofan Engines". Aircraft Design: Synthesis and Analysis. Stanford University. Archived from the original on 11 January 2017.
  13. 1 2 3 David Kalwar (2015). "Integration of turbofan engines into the preliminary design of a high-capacity short-and medium-haul passenger aircraft and fuel efficiency analysis with a further developed parametric aircraft design software" (PDF).
  14. "Purdue School of Aeronautics and Astronautics Propulsion Web Page - TFE731".
  15. 1 2 Lloyd R. Jenkinson & al. (30 Jul 1999). "Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann.
  16. 1 2 3 4 "Gas Turbine Engines" (PDF). Aviation Week. 28 January 2008. pp. 137–138.
  17. Élodie Roux (2007). "Turbofan and Turbojet Engines: Database Handbook". ISBN 9782952938013.
  18. 1 2 Vladimir Karnozov (August 19, 2019). "Aviadvigatel Mulls Higher-thrust PD-14s To Replace PS-90A". AIN Online.
  19. Lloyd R. Jenkinson; et al. (30 Jul 1999). "Civil Jet Aircraft Design: Engine Data File". Elsevier/Butterworth-Heinemann.
  20. Ilan Kroo. "Specific Fuel Consumption and Overall Efficiency". Aircraft Design: Synthesis and Analysis. Stanford University. Archived from the original on November 24, 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.