Large low-shear-velocity provinces, LLSVPs, also called LLVPs or superplumes, are characteristic structures of parts of the lowermost mantle (the region surrounding the outer core) of Earth.[2] These provinces are characterized by slow shear wave velocities and were discovered by seismic tomography of deep Earth. There are two main provinces: the African LLSVP and the Pacific LLSVP. Both extend laterally for thousands of kilometers and possibly up to 1,000 kilometres vertically from the core–mantle boundary. The Pacific LLSVP is 3,000 kilometers (1,900 miles) across, and underlies four hotspots that suggest multiple mantle plumes underneath.[3] These zones represent around 8% of the volume of the mantle (6% of Earth).[1] Other names for LLSVPs include "superswells", "thermo-chemical piles", or "hidden reservoirs". Most of these names, however, are more interpretive of their proposed geodynamical or geochemical effects. For example, the name "thermo-chemical pile" interprets LLSVPs as lower-mantle piles of thermally hot and/or chemically distinct material. LLSVPs are still relatively mysterious, and many questions remain about their nature, origin, and geodynamic effects.
Recent studies suggest superplumes may represent buried relics of the sunken remnants of Theia, an ancient planet that is thought to have collided with Earth and led the Moon to form.[4]
Seismological constraints
LLSVPs were discovered in full mantle seismic tomographic models of shear velocity as slow features in the lowermost mantle beneath Africa and the Pacific. The boundaries of these features appear fairly consistent across models when applying objective k-means clustering.[5] The global spherical harmonic degree two structure is strong and aligns with its smallest moments of inertia along with the two LLSVPs. This means, by using shear wave velocities, the established locations of the LLSVPs are not only verified, a stable pattern for mantle convection emerges. This stable configuration is responsible for the geometry of plate motions at the surface due as well as mantle convection.[6] Another name for the degree two structure, a roughly 200 kilometers (120 miles) thick layer of the lower mantle directly above the core–mantle boundary, is the D″ ("D double-prime" or "D prime prime").[7] The LLSVPs lie around the equator, but mostly on the Southern Hemisphere. Global tomography models inherently result in smooth features; local waveform modeling of body waves, however, has shown that the LLSVPs have sharp boundaries.[8] The sharpness of the boundaries makes it difficult to explain the features by temperature alone; the LLSVPs need to be compositionally distinct to explain the velocity jump. Ultra low velocity zones at smaller scales have been discovered mainly at the edges of these LLSVPs.[9]
By using the solid Earth tide, the density of these regions has been determined. The bottom two thirds are 0.5% denser than the bulk of the mantle. However, tidal tomography cannot say exactly how the excess mass is distributed. The overdensity may be due to primordial material or subducted ocean slabs.[10]
The African large low-shear velocity province may be a potential cause for the South Atlantic Anomaly.[11]
Possible origin
Several hypotheses have been proposed for the origin and persistence of LLSVPs, depending on whether the provinces represent purely thermal unconformities (i.e. are isochemical in nature, of the same chemical composition as the surrounding mantle) or represent chemical unconformities as well (i.e. are thermochemical in nature, of different chemical composition from the surrounding mantle).
If LLSVPs represent purely thermal unconformities, then they may have formed as megaplumes of hot, upwelling mantle. However, geodynamical studies predict that isochemical upwelling of a hotter, lower viscosity material should produce long, narrow plumes,[12] unlike the large, wide plumes seen in LLSVPs.
The current leading hypothesis for the LLSVPs is the accumulation of subducted oceanic slabs. This corresponds with the locations of known slab graveyards surrounding the Pacific LLSVP. These graveyards are thought to be the reason for the high velocity zone anomalies surrounding the Pacific LLSVP and are thought to have formed by subduction zones that were around long before the dispersion—some 750 million years ago—of the supercontinent Rodinia. Aided by the phase transformation, the temperature would partially melt the slabs, to form a dense heavy melt that pools and forms the ultra low velocity zone structures at the bottom of the core-mantle boundary closer to the LLSVP than the slab graveyards. The rest of the material is then carried upwards due to chemical-induced buoyancy and contributes to the high levels of basalt found at the mid-ocean ridge. The resulting motion forms small clusters of small plumes right above the core-mantle boundary that combine to form larger plumes and then contribute to superplumes. The Pacific and African LLSVP, in this scenario, are originally created by a discharge of heat from the core (4000 K) to the much colder mantle (2000 K), the recycled lithosphere is only fuel that helps drive the superplume convection. Since it would be difficult for the Earth's core to maintain this high heat by itself, it gives support for the existence of radiogenic nuclides in the core, as well as the indication that if fertile subducted lithosphere stops subducting in locations preferable for superplume consumption, it will mark the demise of that superplume.[3]
A second proposed origin for the LLSVPs is that their formation is related to the giant-impact hypothesis, which states that the Moon formed after the Earth collided with a planet-sized body called Theia.[4] The hypothesis suggests that the LLSVPs may represent fragments of Theia's mantle which sank through to Earth's core-mantle boundary.[4] The higher density of the mantle fragments is due to their enrichment in iron(II) oxide with respect to the rest of Earth's mantle. This higher iron(II) oxide composition would also be consistent with the isotope geochemistry of lunar samples, as well as that of the oceanic island basalts overlying the LLSVPs.[13][14]
Dynamics
Geodynamic mantle convection models have included compositional distinctive material. The material tends to get swept up in ridges or piles.[9] When including realistic past plate motions into the modeling, the material gets swept up in locations that are remarkably similar to the present day location of the LLSVPs.[15] These locations also correspond with known slab graveyard locations mentioned in the origin section. These types of models, as well as the observation that the degree two structure of the LLSVPs is orthogonal to the path of true polar wander, suggest these mantle structures have been stable over large amounts of time. This geometrical relationship is also consistent with the position of the supercontinent Pangaea, and the formation of the current geoid pattern due to continental break-up from the superswell below.[6] However, the heat from the core is not enough to sustain the energy needed to fuel the superplume(s) located at the LLSVPs. There is a phase transition from perovskite to post-perovskite from the down welling slab(s) that causes an exothermic reaction. This exothermic reaction helps to heat the LLSVP, but it is not sufficient to account for the total energy needed to sustain it. So it is hypothesized that the material from the slab graveyard can become extremely dense and form large pools of melt concentrate enriched in uranium, thorium, and potassium. These concentrated radiogenic elements are thought to provide the high temperatures needed. So, the appearance and disappearance of slab graveyards predicts the birth and death of an LLSVP, potentially changing the dynamics of all plate tectonics.[3]
See also
References
- 1 2 Cottaar; Lekic (2016). "Morphology of lower mantle structures". Geophysical Journal International. 207 (2): 1122–1136. Bibcode:2016GeoJI.207.1122C. doi:10.1093/gji/ggw324.
- ↑ Garnero, Edward J.; McNamara, Allen K.; Shim, Sang-Heon (2016). "Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle". Nature Geoscience. 9 (7): 481–489. Bibcode:2016NatGe...9..481G. doi:10.1038/ngeo2733.
- 1 2 3 Maruyama; Santosh; Zhao (January 2007). "Superplume, supercontinent, and post-perovskite: Mantle dynamis and anti-plate tectonics on the Core-Mantle Boundary". Gondwana Research. 11 (1–2): 7–37. Bibcode:2007GondR..11....7M. doi:10.1016/j.gr.2006.06.003.
- 1 2 3 Yuan, Qian; Li, Mingming; Desch, Steven J.; Ko, Byeongkwan; Deng, Hongping; Garnero, Edward J.; Gabriel, Travis S. J.; Kegerreis, Jacob A.; Miyazaki, Yoshinori; Eke, Vincent; Asimow, Paul D. (November 2023). "Moon-forming impactor as a source of Earth's basal mantle anomalies". Nature. 623 (7985): 95–99. Bibcode:2023Natur.623...95Y. doi:10.1038/s41586-023-06589-1. ISSN 1476-4687. PMID 37914947. S2CID 264869152.
- ↑ Lekic, V.; Cottaar, S.; Dziewonski, A. & Romanowicz, B. (2012). "Cluster analysis of global lower mantle". Earth and Planetary Science Letters. EPSL. 357–358: 68–77. Bibcode:2012E&PSL.357...68L. doi:10.1016/j.epsl.2012.09.014.
- 1 2 Dziewonski, A.M.; Lekic, V.; Romanowicz, B. (2010). "Mantle Anchor Structure: An argument for bottom up tectonics" (PDF). EPSL.
- ↑ Peltier, W.R. (2007). "Mantle dynamics and the D″ layer implications of the post-perovskite phase" (PDF). In Kei Hirose; John Brodholt; Thome Lay; David Yuen (eds.). Post-Perovskite: The Last Mantle Phase Transition. AGU Geophysical Monographs. Vol. 174. American Geophysical Union. pp. 217–227. ISBN 978-0-87590-439-9.
- ↑ To, A.; Romanowicz, B.; Capdeville, Y.; Takeuchi, N. (2005). "3D effects of sharp boundaries at the borders of the African and Pacific Superplumes: Observation and modeling". Earth and Planetary Science Letters. EPSL. 233 (1–2): 137–153. Bibcode:2005E&PSL.233..137T. doi:10.1016/j.epsl.2005.01.037.
- 1 2 McNamara, A.M.; Garnero, E.J.; Rost, S. (2010). "Tracking deep mantle reservoirs with ultra-low velocity zones" (PDF). EPSL.
- ↑ Lau, Harriet C. P.; Mitrovica, Jerry X.; Davis, James L.; Tromp, Jeroen; Yang, Hsin-Ying; Al-Attar, David (15 November 2017). "Tidal tomography constrains Earth's deep-mantle buoyancy". Nature. 551 (7680): 321–326. Bibcode:2017Natur.551..321L. doi:10.1038/nature24452. PMID 29144451. S2CID 4147594.
- ↑ Jackie Appel (March 31, 2023). "Scientists Are Getting Kinda Anxious About a Pothole in Space". Archived from the original on 2023-04-01. Retrieved 2023-04-01.
- ↑ Campbell, Ian H.; Griffiths, Ross W. (1990). "Implications of mantle plume structure for the evolution of flood basalts". Earth and Planetary Science Letters. 99 (1–2): 79–93. Bibcode:1990E&PSL..99...79C. doi:10.1016/0012-821X(90)90072-6.
- ↑ Yuan, Qian; Li, Mingming; Desch, Steven J.; Ko, Byeongkwan (2021). "Giant impact origin for the large low shear velocity provinces" (PDF). 52nd Lunar and Planetary Science Conference. Retrieved 27 March 2021.
- ↑ Zaria Gorvett (12 May 2022). "Why are there continent-sized 'blobs' in the deep Earth?". BBC Future.
- ↑ Steinberger, B.; Torsvik, T.H. (2012). "A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces" (PDF). G^3.
External links
- Garnero, E. (21–23 March 2013). Possible reservoirs of radioactivity in the deep mantle (PDF). Neutrino Geoscience 2013. Takayama, Japan.
- McNamara, A. K. (5 June 2019). "A review of large low shear velocity provinces and ultra low velocity zones". Tectonophysics. 760: 199–220. Bibcode:2019Tectp.760..199M. doi:10.1016/j.tecto.2018.04.015. S2CID 134501105.
- Andrews, R. G. (7 May 2022). "What are the mysterious continent-sized lumps deep inside Earth?". New Scientist (3385).