In stable homotopy theory, a branch of mathematics, the sphere spectrum S is the monoidal unit in the category of spectra. It is the suspension spectrum of S0, i.e., a set of two points. Explicitly, the nth space in the sphere spectrum is the n-dimensional sphere Sn, and the structure maps from the suspension of Sn to Sn+1 are the canonical homeomorphisms. The k-th homotopy group of a sphere spectrum is the k-th stable homotopy group of spheres.
The localization of the sphere spectrum at a prime number p is called the local sphere at p and is denoted by .
See also
- Chromatic homotopy theory
- Adams-Novikov spectral sequence
- Framed cobordism
References
- Adams, J. Frank (1974), Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, MR 0402720
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.