This article covers known hyperaccumulators, accumulators or species tolerant to the following: Aluminium (Al), Silver (Ag), Arsenic (As), Beryllium (Be), Chromium (Cr), Copper (Cu), Manganese (Mn), Mercury (Hg), Molybdenum (Mo), Naphthalene, Lead (Pb), Selenium (Se) and Zinc (Zn).

See also:

Hyperaccumulators table – 1

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Se, Zn – accumulation rates
ContaminantAccumulation rates (in mg/kg dry weight)Binomial nameEnglish nameH-Hyperaccumulator or A-Accumulator P-Precipitator T-TolerantNotesSources
AlA-Agrostis castellanahighland bentgrassAs(A), Mn(A), Pb(A), Zn(A)Origin: Portugal.[1]:898
Al1000Hordeum vulgareBarley25 records of plants.[1]:891[2]
AlHydrangea spp.Hydrangea (a.k.a. Hortensia)
AlAluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[3]Melastoma malabathricum L.Blue Tongue, or Native LassiandraP competes with Al and reduces uptake.[4]
AlSolidago hispida (Solidago canadensis L.)Hairy GoldenrodOrigin Canada.[1]:891[2]
Al100Vicia fabaHorse Bean[1]:891[2]
Ag10-1200Salix miyabeanaWillowAg(T)Seemed able to adapt to high AgNO3 concentrations on a long timeline[5]
AgBrassica napusRapeseed plantCr, Hg, Pb, Se, ZnPhytoextraction[1]:19[6]
AgSalix spp.Osier spp.Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8]Phytoextraction. Perchlorate (wetland halophytes)[1]:19
AgAmanita strobiliformisEuropean Pine Cone LepidellaAg(H)Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas[9]
Ag10-1200Brassica junceaIndian MustardAg(H)Can form alloys of silver-gold-copper[10]
As100Agrostis capillaris L.Common Bent Grass, Browntop. (= A. tenuris)Al(A), Mn(A), Pb(A), Zn(A)[1]:891
AsH-Agrostis castellanaHighland Bent GrassAl(A), Mn(A), Pb(A), Zn(A)Origin Portugal.[1]:898
As1000Agrostis tenerrima Trin.Colonial bentgrass4 records of plants[1]:891[11]
As2-1300Cyanoboletus pulverulentusInk Stain Boletecontains dimethylarsinic acidEurope[12]
As27,000 (fronds)[13]Pteris vittata L.Ladder brake fern or Chinese brake fern26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[14]Root extracts reduce arsenate to arsenite.[15]
As100-7000Sarcosphaera coronariapink crown, violet crown-cup, or violet star cupAs(H)Ectomycorrhizal ascomycete, known from Europe[16][17]
BeNo reports found for accumulation[1]:891
CrAzolla spp.mosquito fern, duckweed fern, fairy moss, water fern[1]:891[18]
CrH-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cu(H), Hg(A), Pb(A)Origin India. Aquatic emergent species.[1]:898[19]
CrBrassica juncea L.Indian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)Cultivated in agriculture.[1]:19,898[20]
CrBrassica napusRapeseed plantAg, Hg, Pb, Se, ZnPhytoextraction[6][1]:19
CrA-Vallisneria americanaTape GrassCd(H), Pb(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade.[1]:898
Cr1000Dicoma niccolifera35 records of plants[1]:891
Crroots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[21] in concentrations 10,000 times that in the surrounding water.[22]Eichhornia crassipesWater HyacinthCd(H), Cu(A), Hg(H),[21] Pb(H),[21] Zn(A). Also Cs, Sr, U,[21][23] and pesticides.[24]Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[25] 'The troublesome weed' – hence an excellent source of bioenergy.[21][1]:898
CrHelianthus annuusSunflowerPhytoextraction and rhizofiltration[1]:19,898
CrA-Hydrilla verticillataHydrillaCd(H), Hg(H), Pb(H)[1]:898
CrMedicago sativaAlfalfa[1]:891[26]
CrPistia stratiotesWater lettuceCd(T), Hg(H), Cr(H), Cu(T)[1]:891,898[27]
CrSalix spp.Osier spp.Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8]Phytoextraction. Perchlorate (wetland halophytes)[1]:19
CrSalvinia molestaKariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)[1]:891,898[28]
CrSpirodela polyrhizaGiant DuckweedCd(H), Ni(H), Pb(H), Zn(A)Native to North America.[1]:891,898[28]
Cr100Jamesbrittenia fodina Hilliard
Sutera fodina Wild
[1]:891[29][30]
CrA-Thlaspi caerulescensAlpine Pennycress, Alpine PennygrassCd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H)Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[31][1]:19,891,898[32][33][34]
Cu9000Aeollanthus biformifolius[35]
CuAthyrium yokoscense(Japanese false spleenwort?)Cd(A), Pb(H), Zn(H)Origin Japan.[1]:898
CuA-Azolla filiculoidesPacific mosquitofernNi(A), Pb(A), Mn(A)Origin Africa. Floating plant.[1]:898
CuH-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Hg(A), Pb(A)Origin India. Aquatic emergent species.[1]:898[19]
CuBrassica juncea L.Indian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)cultivated[1]:19,898[20]
CuH-Vallisneria americanaTape GrassCd(H), Cr(A), Pb(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade.[1]:898
CuEichhornia crassipesWater HyacinthCd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]:898
Cu1000Haumaniastrum robertii
(Lamiaceae)
Copper flower27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[36][1]:891[33]
CuHelianthus annuusSunflowerPhytoextraction with rhizofiltration[1]:898[33]
Cu1000Larrea tridentataCreosote Bush67 records of plants. Origin U.S.[1]:891[33]
CuH-Lemna minorDuckweedPb(H), Cd(H), Zn(A)Native to North America and widespread worldwide.[1]:898
CuOcimum centraliafricanumCopper plantCu(T), Ni(T)Origin Southern Africa[37]
CuT-Pistia stratiotesWater LettuceCd(T), Hg(H), Cr(H)Pantropical. Origin South U.S.A. Aquatic herb.[1]:898
CuThlaspi caerulescensAlpine pennycress, Alpine Pennycress, Alpine PennygrassCd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H)Phytoextraction. Cu noticeably limits its growth.[34][1]:19,891,898[31][32][33][34]
MnA-Agrostis castellanaHighland Bent GrassAl(A), As(A), Pb(A), Zn(A)Origin Portugal.[1]:898
MnAzolla filiculoidesPacific mosquitofernCu(A), Ni(A), Pb(A)Origin Africa. Floating plant.[1]:898
MnBrassica juncea L.Indian mustard[1]:19[20]
Mn23,000 (maximum) 11,000 (average) leafChengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.HuangkoshiaburaOrigin Japan. Forest tree.[38]
MnHelianthus annuusSunflowerPhytoextraction and rhizofiltration[1]:19
Mn1000Macadamia neurophylla
(now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast)
28 records of plants[1]:891[39]
Mn200[1]:891
HgA-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Cu(H), Hg(A), Pb(A)Origin India. Aquatic emergent species.[1]:898[19]
HgBrassica napusRapeseed plantAg, Cr, Pb, Se, ZnPhytoextraction[1]:19[6]
HgEichhornia crassipesWater HyacinthCd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]:898
HgH-Hydrilla verticillataHydrillaCd(H), Cr(A), Pb(H)[1]:898
Hg1000Pistia stratiotesWater lettuceCd(T), Cr(H), Cu(T)35 records of plants[1]:891,898[33][40]
HgSalix spp.Osier spp.Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalix);[7] Potassium ferrocyanide (S. babylonica L.)[8]Phytoextraction. Perchlorate (wetland halophytes)[1]:19
Mo1500Thlaspi caerulescens (Brassicaceae)Alpine pennycressCd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H)phytoextraction[1]:19,891,898[31][32][33][34]
NaphthaleneFestuca arundinaceaTall FescueIncreases catabolic genes and the mineralization of naphthalene.[41]
NaphthaleneTrifolium hirtumPink clover, rose cloverDecreases catabolic genes and the mineralization of naphthalene.[41]
PbA-Agrostis castellana'Highland Bent GrassAl(A), As(H), Mn(A), Zn(A)Origin Portugal.[1]:898
PbAmbrosia artemisiifoliaRagweed[6]
PbArmeria maritimaSeapink Thrift[6]
PbAthyrium yokoscense(Japanese false spleenwort?)Cd(A), Cu(H), Zn(H)Origin Japan.[1]:898
PbA-Azolla filiculoidesPacific mosquitofernCu(A), Ni(A), Mn(A)Origin Africa. Floating plant.[1]:898
PbA-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Cu(H), Hg(A)Origin India. Aquatic emergent species.[1]:898[19]
PbH-Brassica junceaIndian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)79 recorded plants. Phytoextraction[1]:19,891,898[6][20][31][33][34][42]
PbBrassica napusRapeseed plantAg, Cr, Hg, Se, ZnPhytoextraction[1]:19[6]
PbBrassica oleraceaOrnemental Kale and Cabbage, Broccoli[6]
PbH-Vallisneria americanaTape GrassCd(H), Cr(A), Cu(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade.[1]:898
PbEichhornia crassipesWater HyacinthCd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]:898
PbFestuca ovinaBlue Sheep Fescue[6]
PbIpomoea trifidaMorning gloryPhytoextraction and rhizofiltration[1]:19,898[6][7][42]
PbH-Hydrilla verticillataHydrillaCd(H), Cr(A), Hg(H)[1]:898
PbH-Lemna minorDuckweedCd(H), Cu(H), Zn(H)Native to North America and widespread worldwide.[1]:898
PbSalix viminalisCommon OsierCd, U, Zn,[7] Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.);[1]:19 Potassium ferrocyanide (S. babylonica L.)[8]Phytoextraction. Perchlorate (wetland halophytes)[7]
PbH-Salvinia molestaKariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)Origin India.[1]:898
PbSpirodela polyrhizaGiant DuckweedCd(H), Cr(H), Ni(H), Zn(A)Native to North America.[1]:891,898[28]
PbThlaspi caerulescens (Brassicaceae)Alpine pennycress, Alpine pennygrassCd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H)Phytoextraction.[1]:19,891,898[31][32][33][34]
PbThlaspi rotundifoliumRound-leaved Pennycress[6]
PbTriticum aestivumCommon Wheat[6]
Se.012-20Amanita muscariaFly agaricCap contains higher concentrations than stalks[43]
SeBrassica junceaIndian mustardRhizosphere bacteria enhance accumulation.[44][1]:19
SeBrassica napusRapeseed plantAg, Cr, Hg, Pb, ZnPhytoextraction.[1]:19[6]
SeLow rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass.Chara canescens Desv. & LoisMuskgrassMuskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[45] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[46][47]
SeBassia scoparia
(a.k.a. Kochia scoparia)
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweedU,[7] Cr, Pb, Hg, Ag, ZnPerchlorate (wetland halophytes). Phytoextraction.[1]:19,898
SeSalix spp.Osier spp.Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U, Zn (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8]Phytoextraction. Perchlorate (wetland halophytes).[1]:19
ZnA-Agrostis castellanaHighland Bent GrassAl(A), As(H), Mn(A), Pb(A)Origin Portugal.[1]:898
ZnAthyrium yokoscense(Japanese false spleenwort?)Cd(A), Cu(H), Pb(H)Origin Japan.[1]:898
ZnBrassicaceaeMustards, mustard flowers, crucifers or cabbage familyCd(H), Cs(H), Ni(H), Sr(H)Phytoextraction[1]:19
ZnBrassica juncea L.Indian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A).Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997)[1]:19,898[20]
ZnBrassica napusRapeseed plantAg, Cr, Hg, Pb, SePhytoextraction[1]:19[6]
ZnHelianthus annuusSunflowerPhytoextraction and rhizofiltration[1]:19[7]
ZnEichhornia crassipesWater HyacinthCd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]:898
ZnSalix viminalisCommon OsierAg, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products;[1]:19 Cd, Pb, U (S. viminalis);[7] Potassium ferrocyanide (S. babylonica L.)[8]Phytoextraction. Perchlorate (wetland halophytes).[7]
ZnA-Salvinia molestaKariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)Origin India.[1]:898
Zn1400Silene vulgaris (Moench) Garcke (Caryophyllaceae)Bladder campionErnst et al. (1990)
ZnSpirodela polyrhizaGiant DuckweedCd(H), Cr(H), Ni(H), Pb(H)Native to North America.[1]:891,898[28]
ZnH-10,000Thlaspi caerulescens (Brassicaceae)Alpine pennycressCd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H)48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[31][1]:19,891,898[32][33][34][42]
ZnTrifolium pratenseRed CloverNonmetal accumulator.Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[31]

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 McCutcheon, Steven C.; Schnoor, Jerald L. (2003). Phytoremediation: Transformation and Control of Contaminants. Environmental Science and Technology. Wiley. ISBN 978-0-471-39435-8.
  2. 1 2 3 Grauer, U. E.; Horst, W. J. (September 1990). "Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.)". Plant and Soil. Springer. 127 (1): 13–21. doi:10.1007/BF00010832. JSTOR 42938620. S2CID 31201518.
  3. Toshihiro Watanabe; Mitsuru Osaki; Teruhiko Yoshihara; Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil. 201 (2): 165–173. doi:10.1023/A:1004341415878. S2CID 8649008.
  4. Shoellhorn, Rick; Richardson, Alexis A. (2005). "Warm Climate Production Guidelines for Japanese Hydrangeas". EDIS. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 2005 (4). doi:10.32473/edis-ep177-2005. ENH910/EP177.
  5. Nissim, Werther G.; Frederic E., Pitre; Kadri, Hafssa; Desjardins, Dominic; Labrecque, Michel (2014). "Early Response Of Willow To Increasing Silver Concentration Exposure". International Journal of Phytoremediation. 16 (4): 660–670. doi:10.1080/15226514.2013.856840. PMID 24933876. S2CID 1000307.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Fiegl, Joseph L.; McDonnell, Bryan P.; Kostel, Jill A.; Finster, Mary E.; Gray, Kimberly A. "A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils". Civil and Environmental Engineering. Evanston, IL: McCormick School of Engineering, Northwestern University. Archived from the original on 24 February 2011.
  7. 1 2 3 4 5 6 7 8 9 10 11 Schmidt, Ulrich (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". Plant and Soil Interaction. Journal of Environmental Quality. 32 (6): 1939–54. doi:10.2134/jeq2003.1939. PMID 14674516.
  8. 1 2 3 4 5 6 Yu, Xiao-Zhang; Zhou, Pu-Hua; Yang, Yong-Miao (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology. 15 (5): 461–7. doi:10.1007/s10646-006-0081-5. PMID 16703454. S2CID 5930089.
  9. Borovička, Jan; Řanda, Zdeněk; Jelínek, Emil; Kotrba, Pavel; Dunn, Colin E. (November 2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research. 111 (11): 1339–1344. doi:10.1016/j.mycres.2007.08.015. PMID 18023163.
  10. Haverkamp, Richard G.; Marshall, Aaron T.; van Agterveld, Dimitri (2007). "Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo". Journal of Nanoparticle Research. 9 (4): 697–700. Bibcode:2007JNR.....9..697H. doi:10.1007/s11051-006-9198-y. S2CID 56368453.
  11. Porter, E. K.; Peterson, P. J. (November 1975). "Arsenic accumulation by plants on mine waste (United Kingdom)". Science of the Total Environment. Elsevier. 4 (4): 365–371. Bibcode:1975ScTEn...4..365P. doi:10.1016/0048-9697(75)90028-5.
  12. Braeuer, Simone; Goessler, Walter; Kameník, Jan; Konvalinková, Tereza; Žigová, Anna; Borovička, Jan (2018). "Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)". Food Chemistry. 242: 225–231. doi:10.1016/j.foodchem.2017.09.038. PMC 6118325. PMID 29037683.
  13. Junru Wang; Fang-Jie Zhao; Andrew A. Meharg; Andrea Raab; Joerg Feldmann; Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol. 130 (3): 1552–61. doi:10.1104/pp.008185. PMC 166674. PMID 12428020.
  14. Tu, Cong; Ma, Lena Q.; Bondada, Bhaskhar (2002). "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". Journal of Environmental Quality. 31 (5): 1671–5. doi:10.2134/jeq2002.1671. PMID 12371185.
  15. Duan, Gui-Lan; Zhu, Yong-Guan; Tong, Yi-Ping; Cai, Chao; Kneer, Ralf (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology. 138 (1): 461–9. doi:10.1104/pp.104.057422. PMC 1104199. PMID 15834011.
  16. Stijve, Tjakko; Vellinga, Else C.; Herrmann, André (1990). "Arsenic accumulation in some higher fungi". Persoonia - Molecular Phylogeny and Evolution of Fungi. 14 (2): 161–166.
  17. Borovička, Jan (2004). "Nová lokalita baňky velkokališné" [New location for Sarcosphaera coronaria]. Mykologický sborník (in Czech). Prague: Czech Mycological Society. 81 (3): 97–99.
  18. Priel, A. "Purification of industrial wastewater with the Azolla fern". World Water and Environmental Engineering. 18.
  19. 1 2 3 4 Gupta, Manisha; Sinha, Sarita; Chandra, Prakash (1994). "Uptake and toxicity of metals in Scirpus lacustris L. and Bacopa monnieri l.". Journal of Environmental Science and Health. Part A: Environmental Science and Engineering and Toxicology. Taylor & Francis. 29 (10): 2185–2202. doi:10.1080/10934529409376173.
  20. 1 2 3 4 5 Bennett, Lindsay E.; Burkhead, Jason L.; Hale, Kerry L.; Terry, Norman; Pilon, Marinus; Pilon-Smits, Elizabeth A. H. (March 2003). "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". Journal of Environmental Quality. 32 (2): 432–440. doi:10.2134/jeq2003.4320. PMID 12708665.
  21. 1 2 3 4 5 Duke, James A. (1983). "Handbook of Energy Crops". NewCROP. West Lafayette, IN: Center for New Crops and Plant Products, Purdue University. Retrieved 3 January 2023.
  22. "Biology Briefs". BioScience. 26 (3): 223–224. 1976. doi:10.2307/1297259. JSTOR 1297259.
  23. 1 2 3 4 5 "Phytoremediation of Radionuclides". Colorado State University. Archived from the original on 11 January 2012.
  24. 1 2 3 4 5 Lan, Jun-Kang (March 2004). "Recent developments of phytoremediation". Journal of Geological. Hazards and Environmental Preservation. 15 (1): 46–51. Archived from the original on 20 May 2011.
  25. Göhl, Bo; International Foundation for Science (1981). Tropical feeds. Feeds information summaries and nutritive values. FAO Animal Production and Health. Vol. 12. Stockholm: Food and Agriculture Organization of the United Nations.
  26. Kirk J., Tiemann; Gardea-Torresdey, Jorge L.; Gamez, Gerardo; Dokken, Kenneth M. (May 1998). "Interference studies for multi-metal binding by Medicago sativa (alfalfa)" (PDF). Proceedings of the 1998 Conference on Hazardous Waste Research. Metals. Conference on Hazardous Waste Research. Snowbird, UT. pp. 63–75.
  27. Sen, A. K.; Mondal, N. G.; Mandal, S. (1 January 1987). "Studies of Uptake and Toxic Effects of Cr(VI) on Pistia stratiotes". Water Science and Technology. International Water Association. 19 (1–2): 119–127. doi:10.2166/wst.1987.0194.
  28. 1 2 3 4 Srivastav, R. K.; Gupta, S. K.; Nigam, K. D. P.; Vasudevan, P. (July 1994). "Treatment of chromium and nickel in wastewater by using aquatic plants". Water Research. 28 (7): 1631–1638. doi:10.1016/0043-1354(94)90231-3.
  29. Wild, Hiram (1974). "Indigenous plants and chromium in Rhodesia". Kirkia. Zimbabwe's National Herbarium and Botanic Garden. 9 (2): 233–241. JSTOR 23502019.
  30. Brooks, Robert R.; Yang, Xing-hua (August 1984). "Elemental Levels and Relationships in the Endemic Serpentine Flora of the Great Dyke, Zimbabwe and Their Significance as Controlling Factors for the Flora". Taxon. Wiley. 33 (3): 392. doi:10.2307/1220976. JSTOR 1220976.
  31. 1 2 3 4 5 6 7 Delorme, Thierry A.; Gagliardi, Joel V.; Angle, J. Scott; Chaney, Rufus L. (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Canadian Journal of Microbiology. Canadian Science Publishing. 47 (8): 773–776. doi:10.1139/w01-067. PMID 11575505.
  32. 1 2 3 4 5 Majeti Narasimha Vara Prasad (2005). "Nickelophilous plants and their significance in phytotechnologies". Brazilian Journal of Plant Physiology. 17 (1): 113–128. doi:10.1590/s1677-04202005000100010.
  33. 1 2 3 4 5 6 7 8 9 10 Baker, Alan J. M.; Brooks, Robert R. (1989). "Terrestrial higher plants which hyperaccumulate metallic elements: A review of their distribution, ecology and phytochemistry". Biorecovery. 1: 81–126. ISSN 0269-7572.
  34. 1 2 3 4 5 6 7 Lombi, Enzo; Zhao, Fang-Jie; Dunham, Sarah J.; McGrath, Steve P. (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality. 30 (6): 1919–1926. doi:10.2134/jeq2001.1919. PMID 11789997.
  35. Morrison, Richard S.; Brooks, Robert R.; Reeves, Roger D.; Malaisse, François (1979). "Copper and cobalt uptake by metallophytes from Zaïre" (PDF). Plant and Soil. Kluwer. 53 (4): 535–539. doi:10.1007/bf02140724. hdl:2268/266081. S2CID 42737843.
  36. Brooks, Robert R. (1977). "Copper and cobalt uptake by Haumaniustrum species". Plant and Soil. 48 (2): 541–544. doi:10.1007/BF02187261. S2CID 12181174.
  37. Howard-Williams, Clive (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology. 58 (3): 745–763. doi:10.2307/2258533. JSTOR 2258533.
  38. Mizuno, Takafumi; Emori, Kanae; Ito, Shin-ichiro (2013). "Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. and Sav. and its correlation with calcium accumulation". Soil Science and Plant Nutrition. 59 (4): 591–602. doi:10.1080/00380768.2013.807213. S2CID 97458219.
  39. Baker, Alan J. M.; Walker, Philip L. (1990). "Ecophysiology of Metal Uptake by Tolerant Plants". In Shaw, A. Jonathan (ed.). Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL.: CRC Press. pp. 155–177. ISBN 0-8493-6852-9.
  40. Atri 1983
  41. 1 2 Siciliano, Steven D.; Germida, James J.; Banks, Kathy; Greer, Charles W. (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology. 69 (1): 483–9. Bibcode:2003ApEnM..69..483S. doi:10.1128/AEM.69.1.483-489.2003. PMC 152433. PMID 12514031.
  42. 1 2 3 Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised (PDF) (Technical report). Interstate Technology and Regulatory Council. 2009. PHYTO-3.
  43. Stijve, Tjakko (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 164 (3): 201–3. doi:10.1007/BF01263031. PMID 562040. S2CID 31058569.
  44. de Souza, Mark P.; Chu, Dara; Zhao, May; Zayed, Adel M.; Ruzin, Steven E.; Schichnes, Denise; Terry, Norman (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiology. 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMC 32133. PMID 9952452.
  45. X-ray absorption spectroscopy speciation analysis.
  46. Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
  47. Z.-Q. Lin; M.P. de Souza; I. J. Pickering; N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality. 31 (6): 2104–10. doi:10.2134/jeq2002.2104. PMID 12469862.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.