In mathematics, Ostrowski numeration, named after Alexander Ostrowski, is either of two related numeration systems based on continued fractions: a non-standard positional numeral system for integers and a non-integer representation of real numbers.

Fix a positive irrational number α with continued fraction expansion [a0; a1, a2, ...]. Let (qn) be the sequence of denominators of the convergents pn/qn to α: so qn = anqn1 + qn2. Let αn denote Tn(α) where T is the Gauss map T(x) = {1/x}, and write βn = (1)n+1 α0 α1 ... αn: we have βn = anβn1 + βn2.

Real number representations

Every positive real x can be written as

where the integer coefficients 0 ≤ bnan and if bn = an then bn1 = 0.

Integer representations

Every positive integer N can be written uniquely as

where the integer coefficients 0 ≤ bnan and if bn = an then bn1 = 0.

If α is the golden ratio, then all the partial quotients an are equal to 1, the denominators qn are the Fibonacci numbers and we recover Zeckendorf's theorem on the Fibonacci representation of positive integers as a sum of distinct non-consecutive Fibonacci numbers.

See also

References

  • Allouche, Jean-Paul; Shallit, Jeffrey (2003). Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press. ISBN 978-0-521-82332-6. Zbl 1086.11015..
  • Epifanio, C.; Frougny, C.; Gabriele, A.; Mignosi, F.; Shallit, J. (2012). "Sturmian graphs and integer representations over numeration systems". Discrete Appl. Math. 160 (4–5): 536–547. doi:10.1016/j.dam.2011.10.029. ISSN 0166-218X. Zbl 1237.68134.
  • Ostrowski, Alexander (1921). "Bemerkungen zur Theorie der diophantischen Approximationen". Hamb. Abh. (in German). 1: 77–98. JFM 48.0197.04.
  • Pytheas Fogg, N. (2002). Berthé, Valérie; Ferenczi, Sébastien; Mauduit, Christian; Siegel, Anne (eds.). Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics. Vol. 1794. Berlin: Springer-Verlag. ISBN 3-540-44141-7. Zbl 1014.11015.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.