In mathematics and theoretical physics, Noether's second theorem relates symmetries of an action functional with a system of differential equations.[1] The action S of a physical system is an integral of a so-called Lagrangian function L, from which the system's behavior can be determined by the principle of least action.

Specifically, the theorem says that if the action has an infinite-dimensional Lie algebra of infinitesimal symmetries parameterized linearly by k arbitrary functions and their derivatives up to order m, then the functional derivatives of L satisfy a system of k differential equations.

Noether's second theorem is sometimes used in gauge theory. Gauge theories are the basic elements of all modern field theories of physics, such as the prevailing Standard Model.

The theorem is named after its discoverer, Emmy Noether.

See also

Notes

  1. Noether, Emmy (1918), "Invariante Variationsprobleme", Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, 1918: 235–257
    Translated in Noether, Emmy (1971). "Invariant variation problems". Transport Theory and Statistical Physics. 1 (3): 186–207. arXiv:physics/0503066. Bibcode:1971TTSP....1..186N. doi:10.1080/00411457108231446. S2CID 119019843.

References

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.